ORIGINAL PAPER
Influence of sensory integration training on sensory motor functions in patients with thalamic syndrome
 
More details
Hide details
1
Department of Basic Science, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
 
2
Department of Physical Therapy for Neuromuscular Disorders and Its Surgery, Faculty of Physical Therapy, Modern University for Technology and Information, Cairo, Egypt
 
 
Submission date: 2020-06-24
 
 
Acceptance date: 2020-08-26
 
 
Publication date: 2022-05-31
 
 
Physiother Quart. 2022;30(2):69-78
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Thalamic stroke causes impairment in sensory motor functions; these changes in perception lead to pain and deteriorate postural stability. The goal of this study was to investigate the influence of sensory integration training on pain and posture stability in patients with thalamic syndrome.

Methods:
Overall, 30 patients of both sexes, aged 45–65 years, diagnosed with a thalamic stroke were randomly allocated into 2 groups. The control group received selected sensory training of the conventional physical therapy program and the study group received sensory integration training with the Biodex Balance System beside the conventional physical therapy program.

Results:
The intra-group comparisons with MANOVA revealed statistically insignificant differences in pain, as well as overall, anteroposterior (forward and backward), and mediolateral (right and left) limits of stability after the treatment in the control group (p-value of 0.180, 0.301, 0.792, 0.247, 0.381, and 0.847, respectively). In the study group, there was a statistically significant decrease in pain and improvement in overall, anteroposterior (forward and backward), and mediolateral (right and left) limits of stability after the treatment (p-value of 0.01 for pain and 0.000 for each of the 5 limit of stability variables, respectively). The inter-group comparisons showed statistically significant differences in favour of the study group (p = 0.000).

Conclusions:
Adding the sensory integration training program was effective to decrease pain and improve posture stability in patients with thalamic syndrome.

REFERENCES (46)
1.
Smania N, Montagnana B, Faccioli S, Fiaschi A, Aglioti SM. Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Arch Phys Med Rehabil. 2003;84(11):1692–1702; doi: 10.1053/s0003-9993(03)00277-6.
 
2.
Bird T, Choi S, Goodman L, Schmalbrock P, Nichols-Lar­sen DS. Sensorimotor training induced neural reorganization after stroke: a case series. J Neurol Phys Ther. 2013;37(1):27–36; doi: 10.1097/NPT.0b013e318283de0d.
 
3.
Johansen-Berg H, Scholz J, Stagg CJ. Relevance of structural brain connectivity to learning and recovery from stroke. Front Sys Neurosci. 2010;4:146; doi: 10.3389/fnsys.2010.00146.
 
4.
Borstad A, Schmalbrock P, Choi S, Nichols-Larsen DS. Neural correlates supporting sensory discrimination after left hemisphere stroke. Brain Res. 2012;1460:78–87; doi: 10.1016/j.brainres.2012.03.060.
 
5.
Kessner SS, Bingel U, Thomalla G. Somatosensory deficits after stroke: a scoping review. Top Stroke Rehabil. 2016;23(2):136–146; doi: 10.1080/10749357.2015.1116822.
 
6.
Corbetta D, Sarasso E, Agosta F, Filippi M, Gatti R. Mir­ror therapy for an adult with central post-stroke pain: a case report. Arch Physiother. 2018;8:4; doi: 10.1186/s40945-018-0047-y.
 
7.
Hribar M, Šuput D, Battelino S, Vovk A. Review article: structural brain alterations in prelingually deaf. Neuroimage. 2020;220:117042; doi: 10.1016/j.neuroimage.2020.117042.
 
8.
Shafizadeh M. Movement coordination during sit-to-stand in low back pain people. Hum Mov. 2016;17(2):107–111; doi: 10.1515/humo-2016-0012.
 
9.
Page P. Sensorimotor training: a “global” approach for balance training. J Bodyw Mov Ther. 2006;10(1):77–84; doi: 10.1016/j.jbmt.2005.04.006.
 
10.
Cella D, Yount S, Rothrock N, Gershon R, Cook K, Reeve B, et al. The Patient-Reported Outcomes Measurement Information System (PROMIS): progress of an NIH Roadmap cooperative group during its first two years. Med Care. 2007;45(5 Suppl. 1):3–11; doi: 10.1097/01.mlr.0000258615.42478.55.
 
11.
Broderick JE, Schneider S, Junghaenel DU, Schwartz JE, Stone AA. Validity and reliability of Patient-Reported Outcomes Measurement Information System instruments in osteoarthritis. Arthritis Care Res. 2013;65(10):1625–1633; doi: 10.1002/acr.22025.
 
12.
Dawson N, Dzurino D, Karleskint M, Tucker J. Examining the reliability, correlation, and validity of commonly used assessment tools to measure balance. Health Sci Rep. 2018;1(12):e98; doi: 10.1002/hsr2.98.
 
13.
Pereira HM, de Campos TF, Santos MB, Cardoso JR, de Camargo Garcia M, Cohen M. Influence of knee position on the postural stability index registered by the Biodex Stability System. Gait Posture. 2008;28(4):668–672; doi: 10.1016/j.gaitpost.2008.05.003.
 
14.
Yost KJ, Eton DT, Garcia SF, Cella D. Minimally important differences were estimated for six Patient-Reported Outcomes Measurement Information System-Cancer scales in advanced-stage cancer patients. J Clin Epidemiol. 2011;64(5):507–516; doi: 10.1016/j.jclinepi.2010.11.018.
 
15.
National Institute of Neurological Disorders and Stroke. Post-stroke rehabilitation fact sheet. Available from: https://www.ninds.nih.gov/heal....
 
16.
Łozińska P, Wójtowicz D, Wdowiak P, Dziuba-Słonina A. Changes in kinematic parameters during walking in adults with low back pain subjected to Vojta therapy. A pilot study. Physiother Quart. 2019;27(2):22–28; doi: 10.5114/pq.2019.84273.
 
17.
Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44(12):3414–3421; doi: 10.1161/STROKEAHA.113.002058.
 
18.
Flaster M, Meresh E, Rao M, Biller J. Central poststroke pain: current diagnosis and treatment. Top Stroke Rehabil. 2013;20(2):116–123; doi: 10.1310/tsr2002-116.
 
19.
Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V. Self-adaptive robot training of stroke survivors for continuous tracking movements. J Neuroeng Rehabil. 2010;7:13; doi: 10.1186/1743-0003-7-13.
 
20.
Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7(7):CD008449; doi: 10.1002/14651858.CD008449.pub3.
 
21.
Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl.):2–15; doi: 10.1016/j.pain.2010.09.030.
 
22.
Wright ML, Adamo DE, Brown SH. Age-related declines in the detection of passive wrist movement. Neurosci Lett. 2011;500(2):108–112; doi: 10.1016/j.neulet.2011.06.015.
 
23.
Sprenger T, Seifert CL, Valet M, Andreou AP, Foerschler A, Zimmer C, et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain. 2012;135(Pt 8):2536–2545; doi: 10.1093/brain/aws153.
 
24.
Amengual JL, Rojo N, de Las Heras MV, Marco-Pallarés J, Grau-Sánchez J, Schneider S, et al. Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation. PLoS One. 2013;8(4):e61883; doi: 10.1371/journal.pone.0061883.
 
25.
Beaulieu LD, Schneider C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol Clin. 2013;43(4):251–260; doi: 10.1016/j.neucli.2013.05.003.
 
26.
Metral M, Chancel M, Brun C, Luyat M, Kavounoudias A, Guerraz M. Kinaesthetic mirror illusion and spatial congruence. Exp Brain Res. 2015;233(5):1463–1470; doi: 10.1007/s00221-015-4220-1.
 
27.
Doyle S, Bennett S, Fasoli SE, McKenna KT. Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev. 2010;2010(6):CD006331; doi: 10.1002/14651858.CD006331.pub2.
 
28.
Bolognini N, Convento S, Rossetti A, Merabet LB. Multisensory processing after a brain damage: clues on post-injury crossmodal plasticity from neuropsychology. Neurosi Biobehav Rev. 2013;37(3):269–278; doi: 10.1016/j.neubiorev.2012.12.006.
 
29.
Bolognini N, Russo C, Vallar G. Crossmodal illusions in neurorehabilitation. Front Behav Neurosci. 2015;9:212; doi: 10.3389/fnbeh.2015.00212.
 
30.
Russowsky Brunoni A, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–195; doi: 10.1016/j.brs.2011.03.002.
 
31.
Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9:72; doi: 10.1186/1743-0003-9-72.
 
32.
Goble DJ, Coxon JP, Van Impe A, Geurts M, Van Hecke W, Sunaert S, et al. The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp. 2012;33(4):895–908; doi: 10.1002/hbm.21257.
 
33.
Bolognini N, Convento S, Banco E, Mattioli F, Tesio L, Vallar G. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain. 2015;138(Pt 2):428–439; doi: 10.1093/brain/awu343.
 
34.
Battesha HHM, Wadee AN, Shafeek MM, Tawfick AM, Ibrahim HM. Maze control training on kinesthetic awareness in patients with stroke: a randomized controlled trial. Rehabil Res Pract. 2022;2022:5063492; doi: 10.1155/2022/5063492.
 
35.
Chao C-C, Karabanov AN, Paine R, de Campos AC, Kuk­ke SN, Wu T, et al. Induction of motor associative plasticity in the posterior parietal cortex–primary motor network. Cereb Cortex. 2015;25(2):365–373; doi: 10.1093/cercor/bht230.
 
36.
Herter TM, Scott SH, Dukelow SP. Systematic changes in position sense accompany normal aging across adulthood. J Neuroeng Rehabil. 2014;11:43; doi: 10.1186/1743-0003-11-43.
 
37.
Kattenstroth J-C, Kalisch T, Kowalewski R, Tegenthoff M, Dinse HR. Quantitative assessment of joint position sense recovery in subacute stroke patients: a pilot study. J Rehabil Med. 2013;45(10):1004–1009; doi: 10.2340/16501977-1225.
 
38.
Elshinnawy AM, Wadee AN, Tawfick AM. Influence of sensory integration training on postural instability in elderly with parkinsonian disease following stereotactic surgery. Bull Fac Phys Ther. 2019;24:90–98; 10.4103/bfpt.bfpt_1_19.
 
39.
Convento S, Bolognini N, Fusaro M, Lollo F, Vallar G. Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex. 2014;57:51–59; doi: 10.1016/j.cortex.2014.03.006.
 
40.
Lee MY, Kim SH, Choi BY, Chang CH, Ahn SH, Jang SH. Functional MRI finding by proprioceptive input in patients with thalamic hemorrhage. NeuroRehabilitation. 2012;30(2):131–136; doi: 10.3233/NRE-2012-0736.
 
41.
Cortes M, Black-Schaffer RM, Edwards DJ. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians. Neuromodulation. 2012;15(4):316–325; doi: 10.1111/j.1525-1403.2012.00459.x.
 
42.
De Diego C, Puig S, Navarro X. A sensorimotor stimulation program for rehabilitation of chronic stroke patients. Restor Neurol Neurosci. 2013;31(4):361–371; doi: 10.3233/RNN-120250.
 
43.
Edwards DJ, Dipietro L, Demirtas-Tatlidede A, Medei­ros AH, Thickbroom GW, Mastaglia FL, et al. Movement-generated afference paired with transcranial magnetic stimulation: an associative stimulation paradigm. J Neuroeng Rehabil. 2014;11:31; doi: 10.1186/1743-0003-11-31.
 
44.
Fluet GG, Deutsch JE. Virtual reality for sensorimotor rehabilitation post-stroke: the promise and current state of the field. Curr Phys Med Rehabil Rep. 2013;1(1):9–20; doi: 10.1007/s40141-013-0005-2.
 
45.
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3; doi: 10.1186/1743-0003-11-3.
 
46.
Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, function, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–733; doi: 10.1016/j.neubiorev.2009.10.005.
 
eISSN:2544-4395
Journals System - logo
Scroll to top