ORIGINAL PAPER
Correlation between vitamin D level and idiopathic scoliosis development in an adolescent population: early detection
 
More details
Hide details
1
Department of Health and Rehabilitation Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
 
2
Department of Physical Therapy for Paediatrics, Faculty of Physical Therapy, Cairo University, Giza, Egypt
 
3
Department of Basic Science, Faculty of Physical Therapy, South Valley University, Qena, Egypt
 
4
Department of Physical Therapy Musculoskeletal Disorders and Its Surgery, Faculty of Physical Therapy, South Valley University, Qena, Egypt
 
5
Department of Physical Therapy for Internal Medicine, Faculty of Physical Therapy, South Valley University, Qena, Egypt
 
6
Faculty of Applied Medical Sciences, Jerash University, Jordan
 
 
Submission date: 2024-05-27
 
 
Acceptance date: 2024-10-02
 
 
Online publication date: 2025-11-25
 
 
Corresponding author
Mshari Alghadier   

Department of Health and Rehabilitation Sciences, Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Alkharj 11942, Saudi Arabia
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Objective:
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity and has unclear aetiology. Vitamin D deficiency may contribute to AIS through its impact on bone metabolism. This study examined the correlation between vitamin D levels and idiopathic scoliosis development in an adolescent patient population.

Methods:
The study involved 130 patients (aged 7 to 18 years) diagnosed with AIS at a Physiotherapy and Rehabilitation Centre in Qena, Egypt, between May 2021 and October 2022. Patients’ clinical and demographic data were extracted from medical records, including age, gender, height, weight, serum vitamin D level, and Cobb angle. Scoliosis was identified when the Cobb angle was ≥ 10°.

Results:
Patients’ mean age was 13.1 ± 2.75 years, vitamin D level was 10.3 ng/ml ± 4.76, and weight was 47.4 kg ± 9.63. In the patient group, the mean Cobb angle was 16.8 ± 5.79°, with a 95 % confidence interval (CI) of 15.8–17.8. Vitamin D levels correlated positively with age (r = 0.45, p < 0.001) and weight (r = 0.51, p < 0.001). However, only a weak positive correlation was found between vitamin D and the Cobb angle (r = 0.11, p = 0.18).

Conclusions:
Vitamin D deficiency may contribute to AIS pathogenesis by affecting calcium and phosphorus metabolism in bone. As a result, we recommend testing vitamin D levels in those with AIS. Although there was only a positive weak correlation (not significant) between vitamin D levels and Cobb angle, vitamin D deficiency/insufficiency should be examined in AIS patients.
REFERENCES (42)
1.
Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9; doi: 10.1007/s11832-012-0457-4.
 
2.
Weinstein SL, Dolan LA, Cheng JCY, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet. 2008;371(9623):1527–37; doi: 10.1016/S0140-6736(08)60658-3.
 
3.
Graham RB, Sugrue PA, Koski TR. Adult degenerative scoliosis. Clin Spine Surg. 2016;29(3):95–107; doi: 10.1097/BSD.0000000000000367.
 
4.
Shakil H, Iqbal ZA, Al-Ghadir AH. Scoliosis: review of types of curves, etiological theories and conservative treatment. J Back Musculoskelet Rehabil. 2014;27(2):111–5; doi: 10.3233/BMR-130438.
 
5.
Janicki JA, Alman B. Scoliosis: review of diagnosis and treatment. Paediatr Child Health. 2007;12(9):771–6; doi: 10.1093/pch/12.9.771.
 
6.
Fadzan M, Bettany-Saltikov J. Etiological theories of adolescent idiopathic scoliosis. In: Schroth’s Textbook of Scoliosis and Other Spinal Deformities. Cambridge Scholars Publishing; 2020, pp. 185–224.
 
7.
Grivas TB, Vasiliadis E, Mouzakis V, Mihas C, Koufopou­los G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis. 2006;1:9; doi: 10.1186/1748-7161-1-9.
 
8.
Kamtsiuris P, Atzpodien K, Ellert U, Schlack R, Schlaud M. Prevalence of somatic diseases in German children and adolescents. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS) Ergebnisse des Kinder-und Jugendgesundheitssurveys (KiGGS) [in German]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2007;50(5–6):686–700; doi: 10.1007/s00103-007-0230-x.
 
9.
Daruwalla JS, Balasubramaniam P, Chay SO, Rajan U, Lee HP. Idiopathic scoliosis. Prevalence and ethnic distribution in Singapore schoolchildren. J Bone Joint Surg Br. 1985;67(2):182–4; doi: 10.1302/0301-620X.67B2.3980521.
 
10.
Nery LS, Halpern R, Nery PC, Nehme KP, Stein AT. Prevalence of scoliosis among school students in a town in southern Brazil. Sao Paulo Med J. 2010;128:69–73; doi: 10.1590/s1516-31802010000200005.
 
11.
Soucacos PN, Soucacos PK, Zacharis KC, Beris AE, Xenakis TA. School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J Bone Joint Surg Am. 1997;79(10):1498–503; doi: 10.2106/00004623-199710000-00006.
 
12.
Theroux J, Stomski N, Hodgetts CJ, Ballard A, Khadra C, Le May S, et al. Prevalence of low back pain in adolescents with idiopathic scoliosis: a systematic review. Chiropr Man Therap. 2017;25:10; doi: 10.1186/s12998-017-0143-1.
 
13.
Balagué F, Pellisé F. Adolescent idiopathic scoliosis and back pain. Scoliosis Spinal Disord. 2016;11:1–15; doi: 10.1186/s13013-016-0086-7.
 
14.
Weinstein SL. The natural history of adolescent idiopathic scoliosis. J Pediatr Orthop. 2019;39(Suppl 1):44–6; doi: 10.1097/BPO.0000000000001350.
 
15.
Shneerson JM, Madgwick R. The effect of physical training on exercise ability in adolescent idiopathic scoliosis. Acta Orthop Scand. 1979;50(3):303–6; doi: 10.3109/17453677908989771.
 
16.
Sanders AE, Andras LM, Iantorno SE, Hamilton A, Choi PD, Skaggs DL. Clinically significant psychological and emotional distress in 32% of adolescent idiopathic scoliosis patients. Spine Deform. 2018;6(4):435–40; doi: 10.1016/j.jspd.2017.12.014.
 
17.
Cheung PWH, Wong CKH, Cheung JPY. An insight into the health-related quality of life of adolescent idiopathic scoliosis patients who are braced, observed, and previously braced. Spine. 2019;44(10):596–605; doi: 10.1097/BRS.0000000000002918.
 
18.
Monticone M, Ambrosini E, Cazzaniga D, Rocca B, Ferrante S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. Eur Spine J. 2014;23(6):1204–14; doi: 10.1007/s00586-014-3241-y.
 
19.
Meza BC, Iacone D, Talwar D, Sankar WN, Shah AS. Socioeconomic deprivation and its adverse association with adolescent fracture care compliance. JBJS Open Access. 2020;5(2):e0064; doi: 10.2106/JBJS.OA.19.00064.
 
20.
Ramaesh R, Clement ND, Rennie L, Court-Brown C, Gaston MS. Social deprivation as a risk factor for fractures in childhood. Bone Joint J. 2015;97-B(2):240–5; doi: 10.1302/0301-620X.97B2.34057.
 
21.
Kuznia AL, Hernandez AK, Lee LU. Adolescent idiopathic scoliosis: common questions and answers. Am Fam Physician. 2020;101(1):19–23.
 
22.
Altaf F, Gibson A, Dannawi Z, Noordeen H. Adolescent idiopathic scoliosis. BMJ. 2013;346:f2508; doi: 10.1136/bmj.f2508.
 
23.
Horne JP, Flannery R, Usman S. Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician. 2014;89(3):193–8.
 
24.
Peng Y, Wang S-R, Qiu G-X, Zhang J-G, Zhuang Q-Y. Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chin Med J. 2020;133(4):483–93; doi: 10.1097/CM9.0000000000000652.
 
25.
Nowak R, Szota J, Mazurek U. Vitamin D receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of juvenile and adolescent idiopathic scoliosis patients. BMC Musculoskelet Disord. 2012;13:259; doi: 10.1186/1471-2474-13-259.
 
26.
Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS, Ratner ES. Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop. 1987;7(2):168–74; doi: 10.1097/01241398-198703000-00011.
 
27.
Li X-F, Li H, Liu Z-D, Dai L-Y. Low bone mineral status in adolescent idiopathic scoliosis. Eur Spine J. 2008;17:1431–40; doi: 10.1007/s00586-008-0757-z.
 
28.
Yang Y, Chen Z, Huang Z, Tao J, Li X, Zhou X, Du Q. Risk factors associated with low bone mineral density in children with idiopathic scoliosis: a scoping review. BMC Musculoskelet Disord. 2023;24(1):48; doi: 10.1186/s12891-023-06157-8.
 
29.
Allgrove J. Physiology of calcium, phosphate, magnesium and vitamin D. In: Allgrove J, Shaw NJ (eds.). Calcium and Bone Disorders in Children and Adolescents. S: Endocrine Development. Karger; 2015;28:7–32; doi: 10.1159/000380990.
 
30.
Balioglu MB, Aydin C, Kargin D, Albayrak A, Atici Y, Tas SK, Kaygusuz MA. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop B. 2017;26(1):48–52; doi: 10.1097/BPB.0000000000000320.
 
31.
Ng S-Y, Bettany-Saltikov J, Cheung IYK, Chan K. The Role of vitamin D in the pathogenesis of adolescent idiopathic scoliosis. Asian Spine J. 2018;12:1127–45; doi: 10.31616/asj.2018.12.6.1127.
 
32.
Gozdzialska A, Jaśkiewicz J, Knapik-Czajka M, Drag J, Gawlik M, Cieśla M, Kulis A, Zarzycki D, Lipik E. Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine. 2016;41(8):693–7; doi: 10.1097/BRS.0000000000001286.
 
33.
Herdea A, Charkaoui A, Ulici A. Prevalence of 25-OH-Vitamin D and calcium deficiency in adolescent idiopathic scoliosis. J Med Life. 2020;13(2):260–4; doi: 10.25122/jml-2020-0101.
 
34.
Batista RMBF, Martins DE, Wajchenberg M, Lazaretti M, Puertas EB, Terreri MTSLRA, Hayashi LF. Association between vitamin d levels and adolescent idiopathic scoliosis. Coluna/Columna. 2014;13(4); doi: 10.1590/S1808-18512014130400432.
 
35.
Golden NH, Abrams SA; Committee on Nutrition. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):1229–43; doi: 10.1542/peds.2014-2173.
 
36.
Saintonge S, Bang H, Gerber LM. Implications of a new definition of vitamin D deficiency in a multiracial us adolescent population: the National Health and Nutrition Examination Survey III. Pediatrics. 2009;123(3):797–803; doi: 10.1542/peds.2008-1195.
 
37.
Kalra S, Aggarwal S. Vitamin D deficiency: diagnosis and patient centred management. J Pak Med Assoc. 2015;65(5):569–73;.
 
38.
Wajchenberg M, Martins DE, Lazar M. What is the best way to determine the cause of adolescent idiopathic scoliosis?. Ann Transl Med. 2015;3(4); doi: 10.3978/j.issn.2305-5839.2015.02.08.
 
39.
Burwell RG, Dangerfield PH, Moulton A, Grivas TB. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. Scoliosis. 2011;6:26; doi: 10.1186/1748-7161-6-26.
 
40.
Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol. 2009;200(2):207; doi: 10.1677/JOE-08-0241.
 
41.
Wilczyński J, Bieniek K. Correlations of somatic traits and postural defects in girls and boys aged 10–12. Acta Bioeng Biomech. 2019;21(1):79–86.
 
42.
Davis RL, Loman DG, Lorenz RA. Screening adolescents at risk for vitamin D deficiency: a retrospective study. J Nurs Pract. 2017;13(7):317–20; doi: 10.1016/j.nurpra.2017.05.012.
 
eISSN:2544-4395
Journals System - logo
Scroll to top