REVIEW PAPER
Effectiveness of therapeutic suits and intensive suit trainings in individuals with cerebral palsy and other neurological disorders: a scoping review
More details
Hide details
1
Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
2
Faculty of Education, University of Alcalá, Guadalajara, Spain
Submission date: 2020-04-04
Acceptance date: 2020-04-19
Publication date: 2021-06-21
Physiother Quart. 2021;29(2):12-22
KEYWORDS
TOPICS
ABSTRACT
Introduction:
This review aims to find if there is any effectiveness in the application of therapeutic suits or intensive suit trainings or both together, among people with cerebral palsy and other pathologies.
Methods:
Articles published from 1997 to 2019 were reviewed. Fifteen articles met the inclusion criteria that involved: English, Spanish, or Polish language; published studies; studies about the effectiveness of suit therapies regardless of the used protocol (Adeli suit, Therasuit, Penguin suit, or suit therapy); studies conducted among people with cerebral palsy or other neurological disorders regardless of age, type of cerebral palsy, and severity level.
Results:
There were some positive effects in gross motor functions, functional gait, and joint mobility. However, the evidence was not clear and there were numerous factors that could have affected the results and produced methodological limitations.
Conclusions:
The findings justify further exploration of the potential of suit therapies in people with cerebral palsy and other neurological disorders.
REFERENCES (48)
1.
Alagesan J, Shetty A. Effect od modified suit therapy in spastic diplegic cerebral palsy – a single blinded randomized controlled trial. Online J Health Allied Sci. 2010;9(4):14.
2.
Azab ASR, Hamed SA. Effect of suit therapy on back geometry in spastic diplegic cerebral palsied children. J Am Sci. 2014;10(10):245–251; doi: 10.13140/RG.2.1.3806.2161.
3.
Bailes AF, Greve K, Burch CK, Reder R, Lin L, Huth MM. The effect of suit wear during an intensive therapy program in children with cerebral palsy. Pediatr Phys Ther. 2011;23(2):136–142; doi: 10.1097/PEP.0b013e318218ef58.
4.
Elgawish MH, Zakaria MA. The effectiveness of intensive versus standard physical therapy for motor progress in children with spastic cerebral palsy. Egypt Rheumatol Rehabil. 2015;42(1):1–6; doi: 10.4103/1110-161X.155622.
5.
Eunson P. Aetiology and epidemiology of cerebral palsy. Paediatr Child Health. 2012;22(9):361–366; doi: 10.1016/j.paed.2012.05.008.
6.
Mélo TR, Yamaguchi B, Chiarello CR, Szczypior Costin AC, Erthal V, Israel VL, et al. Intensive neuromotor therapy with suit improves motor gross function in cerebral palsy: a Brazilian study. Motricidade. 2017;13(4):54–61; doi: 10.6063/motricidade.13699.
7.
Tatla SK, Sauve K, Virji-Babul N, Holsti L, Butler C, Van Der Loos HFM. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for Cerebral Palsy and Developmental Medicine systematic review. Dev Med Child Neurol. 2013;55(7):593–601; doi: 10.1111/dmcn.12147.
8.
Colver A, Fairhurst C, Pharaoh POD. Cerebral palsy. Lancet. 2014;383(9924):1240–1249; doi: 10.1016/S0140-6736(13)61835-8.
9.
MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol. 2015;213(6):779–788; doi: 10.1016/j.ajog.2015.05.034.
10.
Liptak GS. Complementary and alternative therapies for cerebral palsy. Ment Retard Dev Disabil Res Rev. 2005;11(2):156–163; doi: 10.1002/mrdd.20066.
11.
Martins E, Cordovil R, Oliveira R, Letras S, Lourenço S, Pereira I, et al. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2016;58(4):348–360; doi: 10.1111/dmcn.12988.
12.
Rosenbaum P. Controversial treatment of spasticity: exploring alternative therapies for motor function in children with cerebral palsy. J Child Neurol. 2003;18(Suppl. 1):S89–S94; doi: 10.1177/0883073803018001S0101.
13.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14; doi: 10.1111/j.1469-8749.2007.tb12610.x.
14.
Smith M, Kurian MA. The medical management of cerebral palsy. Paediatr Child Health. 2012;22(9):372–376; doi: 10.1016/j.paed.2012.04.002.
15.
Almeida KM, Fonseca ST, Figueiredo PRP, Aquino AA, Mancini MC. Effects of interventions with therapeutic suits (clothing) on impairments and functional limitations of children with cerebral palsy: a systematic review. Braz J Phys Ther. 2017;21(5):307–320; doi: 10.1016/j.bjpt.2017.06.009.
16.
Bailes AF, Greve K, Schmitt LC. Changes in two children with cerebral palsy after intensive suit therapy: a case report. Pediatr Phys Ther. 2010;22(1):76–85; doi: 10.1097/PEP.0b013e3181cbf224.
17.
Bar-Haim S, Harries N, Belokopytov M, Frank A, Copeliovitch L, Kaplanski J, et al. Comparison of efficacy of Adeli suit and neurodevelopmental treatments in children with cerebral palsy. Dev Med Child Neurol. 2006;48(5):325–330; doi: 10.1017/S0012162206000727.
18.
Ko M-S, Lee J-A, Kang S-Y, Jeon H-S. Effect of Adeli suit treatment on gait in a child with cerebral palsy: a single-subject report. Physiother Theory Pract. 2014;31(4):275–282; doi: 10.3109/09593985.2014.996307.
19.
Kim M-R, Lee B-H, Park D-S. Effects of combined Adeli suit and neurodevelopmental treatment in children with spastic cerebral palsy with gross motor function classification system levels I and II. Hong Kong Physiother J. 2016;34:10–18; doi: 10.1016/j.hkpj.2015.09.036.
20.
Hombergen SP, Huisstede BM, Streur MF, Stam HJ, Slaman J, Bussmann JB, et al. Impact of cerebral palsy on health-related physical fitness in adults: systematic review. Arch Phys Med Rehabil. 2012;93(5):871–881; doi: 10.1016/j.apmr.2011.11.032.
21.
Pavão S, Visicato LP, da Costa CSN, de Campos AC, Rocha NACF. Effects of suit-orthosis on postural adjustments during seated reaching task in children with cerebral palsy. Pediatr Phys Ther. 2018;30(3):231–237; doi: 10.1097/PEP.0000000000000519.
22.
Shvarkov SB, Davydov OS, Kuuz RA, Aipova TR, Vein AM. New approaches to the rehabilitation of patients with neurological movement defects. Neurosci Behav Physiol. 1997;27(6):644–647; doi: 10.1007/bf02461921.
23.
Solopova IA, Moshonkina TR, Umnov VV, Vissarionov SV, Baindurashvili AG, Gerasimenko YP. Neurorehabilitation of patients with cerebral palsy. Hum Physiol. 2015;41(4):448–454; doi: 10.1134/S0362119715040155.
24.
Turner AE. The efficacy of Adeli suit treatment in children with cerebral palsy. Dev Med Child Neurol. 2006;48(5):324; doi: 10.1017/S0012162206000715.
25.
Lee B-H. Clinical usefulness of Adeli suit therapy for improving gait function in children with spastic cerebral palsy: a case study. J Phys Ther Sci. 2016;28(6):1949–1952; doi: 10.1589/jpts.28.1949.
26.
Mahani MK, Karimloo M, Amirsalari S. Effects of modified Adeli suit therapy on improvement of gross motor function in children with cerebral palsy. Hong Kong J Occup Ther. 2011;21(1):9–14; doi: 10.1016/j.hkjot.2011.05.001.
27.
Myrhaug HT, Østensjø S, Larun L, Odgaard-Jensen J, Jahnsen R. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis. BMC Pediatr. 2014;14:292; doi: 10.1186/s12887-014-0292-5.
28.
Bailes AF, Reder R, Burc C. Development of guidelines for determining frequency of therapy services in a pediatric medical setting. Pediatr Phys Ther. 2008;20(2):194–198; doi: 10.1097/PEP.0b013e3181728a7b.
29.
Hanson H, Harrington AT, Nixon-Cave K. Implementing treatment frequency and duration guidelines in a hospital-based pediatric outpatient setting: administrative case report. Phys Ther. 2015;95(4):678–684; doi: 10.2522/ptj.20130360.
30.
Christy JB, Chapman CG, Murphy P. The effect of intense physical therapy for children with cerebral palsy. J Pediatr Rehabil Med. 2012;5(3):159–170; doi: 10.3233/PRM-2012-0208.
31.
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–384; doi: 10.1136/jech.52.6.377.
32.
Cascia N, Picha K, Hettrich CM, Uhl TL. Considerations of conservative treatment after a partial ulnar collateral ligament injury in overhead athletes: a systematic review. Sports Health. 2019;11(4):367–374; doi: 10.1177/1941738119853589.
33.
Chakravorty A, Mobbs RJ, Anderson DB, Rooke K, Phan K, Yoong N, et al. The role of wearable devices and objective gait analysis for the assessment and monitoring of patients with lumbar spinal stenosis: systematic review. BMC Musculoskelet Disord. 2019;20(1):288; doi: 10.1186/s12891-019-2663-4.
34.
Mallari B, Spaeth EK, Goh H, Boyd BS. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. J Pain Res. 2019;12:2053–2085; doi: 10.2147/JPR.S200498.
35.
Szeszulski J, Lorenzo E, Shaibi GQ, Buman MP, Vega-López S, Hooker SP, et al. Effectiveness of early care and education center-based interventions for improving cardiovascular fitness in early childhood: a systematic review and meta-analysis. Prev Med Rep. 2019;15:100915; doi: 10.1016/j.pmedr.2019.100915.
36.
Szkwara JM, Milne N, Hing W, Pope R. Effectiveness, feasibility, and acceptability of dynamic elastomeric fabric orthoses (DEFO) for managing pain, functional capacity, and quality of life during prenatal and postnatal care: a systematic review. Int J Environ Res Public Health. 2019;16(13):2408; doi: 10.3390/ijerph16132408.
38.
Conolly MP, Haitsma G, Hernández AV, Vidal JE. Systematic review and meta-analysis of secondary prophylaxis for prevention of HIV-related toxoplasmic encephalitis relapse using trimethoprim-sulfamethoxazole. Pathog Glob Health. 2017;111(6):327–331; doi: 10.1080/20477724.2017.1377974.
39.
Diez-Fernández A, Álvarez-Bueno C, Martínez-Vizcaíno V, Sotos-Prieto M, Recio-Rodríguez JI, Cavero-Redondo I. Total dairy, cheese and milk intake and arterial stiffness: a systematic review and meta-analysis of cross-sectional studies. Nutrients. 2019;11(4):741; doi: 10.3390/nu11040741.
40.
Harris JA, Moniz MH, Iott B, Power R, Griggs JJ. Obesity and the receipt of influenza and pneumococcal vaccination: a systematic review and meta-analysis. BMC Obes. 2016;3:24; doi: 10.1186/s40608-016-0105-5.
41.
Koppen IJN, Kuizenga-Wessel S, Saps M, Di Lorenzo C, Benninga MA, van Etten-Jamaludin FS, et al. Functional defecation disorders and excessive body weight: a systematic review. Pediatrics. 2016;138(3):e20161417; doi: 10.1542/peds.2016-1417.
42.
Martins E, Cordovil R, Oliveira R, Pinho J, Diniz A, Vaz JR. The immediate effects of a dynamic orthosis on gait patterns in children with unilateral spastic cerebral palsy: a kinematic analysis. Front Pediatr. 2019;7:42; doi: 10.3389/fped.2019.00042.
43.
Semyonova KA, Antonova LV. The influence of the LK-92 “Adeli” treatment loading suit on electro-neuro-myographic characteristics in patients with infantile cerebral paralysis. Zh Nevrol Psikhiatr Im S S Korsakova. 1998;98(9):22–25.
44.
Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. 2009;1(1):MR000006; doi: 10.1002/14651858.MR000006.pub3.
45.
Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan A-W, Cronin E, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;28:3(8):e3081; doi: 10.1371/journal.pone.0003081.
46.
Lewicka M, Kurylak A. Assessment of quality of life in patients with cerebral palsy. Pediatr Pol. 2019;94(2):119–127; doi: 10.5114/polp.2019.85041.
47.
Lewicka M, Kurylak A. The quality of life of patients with cerebral palsy versus the general population. Pediatr Pol. 2019;94(5):288–292; doi: 10.5114/polp.2019.89864.
48.
Imanieh MH, Golpayegan MR, Sedighi M, Ahmadi K, Aghaie A, Dehghani SM, et al. Comparison of three therapeutic interventions for chronic constipation in paediatric patients with cerebral palsy: a randomised clinical trial. Gastroenterology Rev. 2019;14(4):292–297; doi: 10.5114/pg.2019.84872.