ORIGINAL PAPER
Efficacy of extracorporeal shock wave therapy on carpal tunnel syndrome post-mastectomy lymphoedema: a double-blind randomised, controlled study
More details
Hide details
1
Department of Surgery, Cairo University, Cairo, Egypt
Submission date: 2024-02-11
Acceptance date: 2024-08-15
Online publication date: 2025-08-14
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Post-mastectomy lymphoedema has long been considered a risk factor for median nerve compression and pain in the wrist, causing carpal tunnel syndrome, so this study aimed to evaluate the effects of extracorporeal shock wave treatment on carpal tunnel syndrome post-mastectomy lymphoedema.
Subjects and Methods:
Sixty-eight females diagnosed with CTS and hand lymphoedema by a physician and referred to the physiotherapy clinic were randomised into two equal groups. The experimental group received focal extracorporeal shock wave therapy (fECSWT), and the control group received sham fECSWT for 1 session per week combined with 2 conventional physiotherapy sessions (manual lymph drainage, compression bandage, exercise, and skin care) per week for 4 weeks. Pain intensity by the Visual Analogue Scale, nerve conduction velocity disability by the Boston Carpal Tunnel Questionnaire, and limb volume by tape measurement were measured before and after 4 weeks of treatment. Two-way mixed MANOVA was conducted to investigate the effect of treatment and time on all measured variables. A significance level of p < 0.05 was set for all statistical tests.
Results:
After treatment, there was a significant reduction in pain intensity (effect size = 1.46, MD = 0.8 cms), symptoms severity (effect size = 1.04, MD = 3.03) and limb volume (effect size = 0.04, MD = 9.79 ml), and a reduction in sensory and motor distal latency with effect size = 0.78 and 0.83, MD = −0.18 ms and 0.17 ms, respectively, in both groups, favouring the experimental group.
Conclusions:
Extracorporeal shock wave therapy has a positive clinically relevant effect in reducing the pain and intensity of symptoms associated with carpal tunnel syndrome with improving functionality in those with post-mastectomy lymphoedema over conventional therapy alone.
REFERENCES (46)
1.
Genova A, Dix O, Saefan A, Thakur M, Hassan A. Carpal tunnel syndrome: a review of literature. Cureus, 2020;12(3):e7333; doi: 10.7759/cureus.7333.
2.
Çirakli A, Ulusoy EK, EkinciY. The role of electrophysiological examination in the diagnosis of carpal tunnel syndrome: analysis of 2516 patients. Niger J Clin Pract. 2018;21(6):731–4; doi: 10.4103/njcp.njcp_25_17.
3.
Gunnoo N, Ebelin M, Arrault M, Vignes S. Impact of carpal tunnel syndrome surgery on women with breast cancer related lymphedema. Breast Cancer Res Treat. 2015;152(3):683–6; doi: 10.1007/s10549-015-3500-6.
4.
Stubblefield MD, Kim A, Riedel ER, Ibanez K. Carpal tunnel syndrome in breast cancer survivors with upper extremity lymphedema: carpal tunnel in lymphedema. Muscle Nerve. 2015;51(6):864–9; doi: 10.1002/mus.24506.
5.
Smoot B, Wong J, Cooper B, Wanek L, Topp K, Byl N, Dodd M. Upper extremity impairments in women with or without lymphedema following breast cancer treatment. J Cancer Surviv. 2010;4(2):167–78; doi: 10.1007/s11764-010-0118-x.
6.
Wilson JK, Sevier TL. A review of treatment for carpal tunnel syndrome. Disabil Rehabil. 2003;25(3):113–9; doi: 10.1080/0963828021000007978.
7.
Wang C-J. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;7:11. doi: 10.1186/1749-799X-7-11.
8.
Ke M-J, Chen L-C, Chou Y-C, Li T-Y, Chu H-Y, Tsai C-K, Wu Y-T. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial. Sci Rep. 2016;6:38344; doi: 10.1038/srep38344.
9.
Weihs AM, Fuchs C, Teuschl AH, Hartinger J, Slezak P, Mittermayr R, Redl H, Junger WG, Sitte HH, Rünzler D. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2014;289(39):27090–104; doi: 10.1074/jbc.M114.580936.
10.
Mense S, Hoheisel U. Shock wave treatment improves nerve regeneration in the rat. Muscle Nerve. 2013;47(5):702–10; doi: 10.1002/mus.23631.
11.
Hammer DS, Adam F, Kreutz A, Kohn D, Seil R. Extracorporeal shock wave therapy (ESWT) in patients with chronic proximal plantar fasciitis: a 2year followup. Foot Ankle Int. 2003;24(11):823–8; doi: 10.1177/107110070302401103.
12.
Stania M, Juras G, Chmielewska D, Polak A, Kucio C, Król P. Extracorporeal shock wave therapy for achilles tendinopathy. Biomed Res Int. 2019;2019:3086910; doi: 10.1155/2019/3086910.
13.
Ciampa AR, de Prati AC, Amelio E, Cavalieri E, Persichini T, Colasanti M, Musci G, Marlinghaus E, Suzuki H, Mariotto S. Nitric oxide mediates antiinflammatory action of extracorporeal shock waves. FEBS Lett. 2005;579(30):6839–45; doi: 10.1016/j.febslet.2005.11.023.
14.
Romeo P, d’Agostino MC, Lazzerini A, Sansone VC. Extracorporeal shock wave therapy in pillar pain after carpal tunnel release: a preliminary study. Ultrasound Med Biol. 2011;37(10):1603–8; doi: 10.1016/j.ultrasmedbio.2011.07.002.
15.
Jablecki CK, Andary MT, Floeter MK, Miller RG, Quartly CA, Vennix MJ, Wilson JR; American Association of Electrodiagnostic Medicine; American Academy of Neurology; American Academy of Physical Medicine and Rehabilitation. Electrodiagnostic studies in carpal tunnel syndrome. Report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2002;58(11):1589–92; doi: 10.1212/wnl.58.11.1589.
16.
Ulucaköy RK, Yurdakul FG, Bodur H. Extracorporeal shock wave therapy as a conservative treatment option for carpal tunnel syndrome: a double-blind, prospective, randomized, placebo-controlled study. Turk J Phys Med Rehabil. 2020;66(4):388–97; doi: 10.5606/tftrd.2020.3956.
17.
Wu Y-T, Ke M-J, Chou Y-C, Chang C-Y, Lin C-Y, Li T-Y, Shih F-M, Chen L-C. Effect of radial shock wave therapy for carpal tunnel syndrome: a prospective randomized, double-blind, placebo-controlled trial. J Orthop Res. 2016;34(6):977–84; doi: 10.1002/jor.23113.
18.
Chen L-C, Ho C-W, Sun C-H, Lee J-T, Li T-Y, Shih F-M, Wu Y-T. Ultrasound-guided pulsed radiofrequency for carpal tunnel syndrome: a single-blinded randomized controlled study. PLOS ONE. 2015;10(6):e0129918; doi: 10.1371/journal.pone.0129918.
19.
Ochalek K, Kurpiewska J, Gradalski T. Adjustable compression wraps (ACW) vs. compression bandaging (CB) in the acute phase of breast cancer-related arm lymphedema management – a prospective randomized study. Biology. 2023;12(4):534; doi: 10.3390/biology12040534.
20.
Tzani I, Tsichlaki M, Zerva E, Papathanasiou G, Dimakakos E. Physiotherapeutic rehabilitation of lymphedema: state-of-the-art. Lymphology. 2018;51(1):1–12.
21.
Palmer SJ. Skin care considerations for those with chronic oedema or lymphoedema. Br J Community Nurs. 2021;26(10):510–3; doi: 10.12968/bjcn.2021.26.10.510.
22.
Melam GR, Buragadda S, Alhusaini AA, Arora N. Effect of complete decongestive therapy and home program on health-related quality of life in post mastectomy lymphedema patients. BMC Womens Health. 2016;16:23; doi: 10.1186/s12905-016-0303-9.
23.
Fu MR. Breast cancer-related lymphedema: symptoms, diagnosis, risk reduction, and management. World J Clin Oncol. 2014;5(3):241–7; doi: 10.5306/wjco.v5.i3.241.
24.
Dumitru D, Amato AA, Zwarts M. Electrodiagnostic Medicine. San Antonio: Hanley and Belfu; 2002.
25.
Jose. luiz B, Bevilaqua, Michael W. Kattan, Yu Changhong, Koifman S, Mattos IE, Koifman RJ, Bergmann A. Nomogram for predicting the risk of arm lymphedema after axillary dissection in breast cancer. Ann Surg Oncol. 2012;19(8):2580–9; doi: 10.1245/s10434-012-2290.
26.
Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short-form mcgill pain questionnaire (sf-mpq), chronic pain grade scale (cpgs), short form-36 bodily pain scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis Care Res. 2011:63(Suppl 11):240–52; doi: 10.1002/acr.20543.
27.
Multanen J, Ylinen J, Karjalainen T. Ikonen J, Häkkinen A, Repo JP. Structural validity of the Boston Carpal Tunnel Questionnaire and its short version, the 6-Item CTS symptoms scale: a Rasch analysis one year after surgery. BMC Musculoskelet Disord. 2020;609; doi: 10.1186/s12891-020-03626.
28.
Poenaru D, Sandulescu MI, Cinteza D. Biological effects of extracorporeal shockwave therapy in tendons: a systematic review. Biomed Rep. 2022;18(2):15; doi: 10.3892/br.2022.1597.
29.
Qiao H-Y, Xin L, Wu S-L. Analgesic effect of extracorporeal shock-wave therapy for frozen shoulder: a randomized controlled trial protocol. Medicine. 2020;99(31):e21399; doi: 10.1097/MD.0000000000021399.
30.
Wang C-J, Yang KD, Ko J-Y, Huang C-C, Huang H-Y, Wang F-S. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-β1, VEGF and BMP-2 in long bone non-unions. Nitric Oxide. 2009;20(4):298–303; doi: 10.1016/j.niox.2009.02.006.
31.
Schroeder AN, Tenforde AS, Jelsing EJ. Extracorporeal shockwave therapy in the management of sports medicine injuries. Curr Sports Med Rep. 2021;20(6):298–305; doi: 10.1249/JSR.0000000000000851.
32.
Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: From mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015;24(Pt B):147–53; doi: 10.1016/j.ijsu.2015.11.030.
33.
Ioppolo F, Tattoli M, Di Sante L, Venditto T, Tognolo L, Delicata M, Rizzo RS, di Tanna G, Santilli V. Clinical improvement and resorption of calcifications in calcific tendinitis of the shoulder after shock wave therapy at 6 months’ follow-up: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2013;94(9):1699–706; doi: 10.1016/j.apmr.2013.01.030.
34.
Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, Téot L, Stojadinovic A, Schaden W. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012;20(4):456–65; doi: 10.1111/j.1524-475X.2012.00796.x.
35.
Saggini R, Di Stefano A, Saggini A, Bellomo RG. Clinical application of shock wave therapy in musculoskeletal disorders: Part I. J Biol Regul Homeost Agents. 2015;29(3):533–45.
36.
Vahdatpour B, Kiyani A, Dehghan F. Effect of extracorporeal shock wave therapy on the treatment of patients with carpal tunnel syndrome. Adv Biomed Res. 2016;5:120; doi: 10.4103/2277-9175.186983.
37.
Xu D, Ma W, Jiang W, Hu X, Jiang F, Mao C, Wang Y, Fang L, Luo N, Li H, Lou Z, Gan K. Comparing extracorporeal shock wave therapy versus local corticosteroid injection for the treatment of carpal tunnel syndrome. A randomized controlled trial. Int Orthop. 2020;44(1):141–6; doi: 10.1007/s00264-019-04432-9.
38.
Atthakomol P, Manosroi W, Phanphaisarn A, Phrompaet S, Lammatavee S, Tongprasert S. Comparison of single-dose radial extracorporeal shock wave and local corticosteroid injection for treatment of carpal tunnel syndrome including mid-term efficacy: a prospective randomized controlled trial. BMC Musculoskelet Disord. 2018;19(1):32; doi: 10.1186/s12891-018-1948-3.
39.
Ghaderi L, Naseri AR. Detection of carpal tunnel syndrome in women experiencing lymphedema after mastectomy. Int J New Chemistry. 2021;8(5):262–9.
40.
Seok H, Kim SH. The effectiveness of extracorporeal shock wave therapy vs. local steroid injection for management of carpal tunnel syndrome: a randomized controlled trial. Am J Phys Med Rehabil. 2013;92(4):327–34; doi: 10.1097/PHM.0b013e31826edc7b.
41.
Paoloni M, Tavernese E, Cacchio A, D’orazi V, Ioppolo F, Fini M, Santilli V, Mangone M. Extracorporeal shock wave therapy and ultrasound therapy improve pain and function in patients with carpal tunnel syndrome. A randomized controlled trial. Eur J Phys Rehabil Med. 2015;51(5):521–8.
42.
Raissi GR, Ghazaei F, Forogh B, Madani SP, Daghaghzadeh A, Ahadi T. The efectiveness of radial extracorporeal shock waves for the treatment of carpal tunnel syndrome: a randomized clinical trial. Ultrasound Med Biol. 2017;43(2):453–60; doi: 10.1016/j.ultrasmedbio.2016.08.022.
43.
Wu Y-H, Liang H-W, Chen W-S, Lai J-S, Luh J-J, Chong F-C. Electrophysiological and functional effects of shock waves on the sciatic nerve of rats. Ultrasound Med Biol. 2008;34(10):1688–96; doi: 10.1016/j.ultrasmedbio.2008.03.005.
44.
Lohse-Busch H, Marlinghaus E, Reime U, Möwis U. Focused low-energy extracorporeal shock waves with distally symmetric polyneuropathy (DSPNP): a pilot study. NeuroRehabilitation. 2014;35(2):227–33; doi: 10.3233/NRE-141116.
45.
Kim JC, Jung SH, Lee SU, Lee SY. Effect of extracorporeal shockwave therapy on carpal tunnel syndrome: a systematic review and meta-analysis of randomized controlled trials. Medicine. 2019;98(33):e16870; doi: 10.1097/MD.0000000000016870.
46.
Xie Y, Zhang C, Liang B, Wang J. Wang L, Wan, Xu F, Lei L. Effects of shock wave therapy in patients with carpal tunnel syndrome: a systematic review and meta-analysis. Disabil Rehabil. 2022;44(2):177–88; doi: 10.1080/09638288.2020.1762769.