ORIGINAL PAPER
Physical rehabilitation for Parkinson’s disease: assessment and treatment preferences of physical therapists
 
More details
Hide details
1
Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore Campus, Lahore Pakistan
 
2
Pakistan Society of the Rehabilitation of the Disabled (PSRD), Lahore, Pakistan
 
 
Submission date: 2022-04-14
 
 
Acceptance date: 2022-06-06
 
 
Publication date: 2023-12-19
 
 
Physiother Quart. 2023;31(4):70-80
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Patients with Parkinson’s disease are often prescribed physical therapy. Physiotherapists often assist Parkinson’s disease patients with assessment and treatment, but little is known about the assessment tools and interventions they use. Additionally, physical therapists do not consistently integrate standard outcome measures and treatment procedures into their practices. Consequently, this study was carried out to determine physical therapists’ preferences for assessment and treatment of Parkinson’s disease.

Methods:
Five hundred questionnaires were distributed to physiotherapists working in clinical settings. Overall, 446 physiotherapists responded to the survey and returned the questionnaires. Questionnaires with incomplete information were excluded from the survey. In total, 418 physiotherapists participated in the study, of whom 324 saw PD patients in their clinical practice.

Results:
Overall, 446 physiotherapists responded to the survey and returned the questionnaires. Questionnaires with incomplete information were excluded from the survey. In total, 418 physiotherapists participated in the study, of whom 324 saw PD patients in their clinical practice. Study participants included 43.8% male PTs and 56.2% female PTs with an average age of 30.02 ± 5.38 years. The Berg balance scale for balance assessment was preferred by 220 (67.9%), the Mini Mental State Examination for cognitive assessment was preferred by 317 (97.8%), and the Unified Parkinson’s Disease Rating Scale was preferred by 168 (51.85%) PTs. Neurological PTs employed PNF (proprioceptive neuromuscular facilitation) to decrease stiffness, and exercise and task-focused training for functional training. Virtual Reality and Motor Imagery were also known by 56.6% and 62.4% of PTs, respectively, although only 4.8% and 1.85% used them.

Conclusions:
Study results revealed that most physiotherapists follow routine assessment and treatment protocols and do not implement innovative technology in the physical rehabilitation of patients with Parkinson’s disease.

REFERENCES (84)
1.
Muangpaisan W, Mathews A, Hori H, Seidel D. A systematic review of the worldwide prevalence and incidence of Parkinson’s disease. J Med Assoc Thai. 2011;94(6):749–755.
 
2.
Mosley PE, Moodie R, Dissanayaka N. Caregiver burden in Parkinson disease: a critical review of recent literature. Int J Geriatr Psychiatry Neurol. 2017;30(5):235–252; doi: 10.1177/0891988717720302.
 
3.
Martinez-Martin P, Rodriguez-Blazquez C, Forjaz MJ. Quality of life and burden in caregivers for patients with Parkinson’s disease: concepts, assessment and related factors. Expert Rev Pharmacoecon Outcomes Res. 2012;12(2):221–230; doi: 10.1586/erp.11.106.
 
4.
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Parkinsons Dis. 2020;6(1):1–9; doi: 10.1038/s41531-020-0117-1.
 
5.
Martinez-Martin P, Macaulay D, Jalundhwala YJ, Mu F, Ohashi E, Marshall T, et al. The long-term direct and indirect economic burden among Parkinson’s disease caregivers in the United States. Mov Disord. 2019;34(2):236–245; doi: 10.1002/mds.27579.
 
6.
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–1590; doi: 10.1002/mds.25945.
 
7.
Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Møller SG. Parkinson’s disease and age: the obvious but largely unexplored link. Experimental gerontology.2015;68:33–38; doi: 10.1016/j.exger.2014.09.014.
 
8.
Meara J, Hobson P. Epidemiology of Parkinson’s disease. In: Parkinson’s Disease in the Older Patient: CRC Press; 2018:30–38.
 
9.
Cilia R, Cereda E, Klersy C, Canesi M, Zecchinelli AL, Mariani CB, et al. Parkinson’s disease beyond 20 years. J Neurol Neurosurg Psychiatry. 2015;86(8):849–555; doi: 10.1136/jnnp-2014-308786.
 
10.
Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46(4):292–300; doi: 10.1159/000445751.
 
11.
Dorsey E, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(Suppl 1):3–8; doi: 10.3233/JPD-181474.
 
12.
Armstrong MJ, Okun MS. Time for a new image of Parkinson disease. JAMA Neurol. 2020;77(11):1345–1346; doi: 10.1001/jamaneurol.2020.2412.
 
13.
Bach JP, Ziegler U, Deuschl G, Dodel R, Doblhammer-Reiter G. Projected numbers of people with movement disorders in the years 2030 and 2050. Mov Disord. 2011;26(12):2286–2290; doi: 10.1002/mds.23878.
 
14.
Rocca WA. The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol. 2018;17(11):928–929; doi: 10.1016/S1474-4422(18)30355-7.
 
15.
Wasay M, Ali S. Growing burden of neurological diseases in Pakistan – need for a national health survey. J Pak Med Assoc. 2010;60(3): 249–250.
 
16.
Hussain G, Rasul A, Anwar H, Sohail MU, Kamran SKS, Baig SM, et al. Epidemiological data of neurological disorders in Pakistan and neighbouring countries: a review. PJNS. 2017;12(4):52–70.
 
17.
Tanveer K, Attique I, Sadiq W, Ahmad A. Non-motor symptoms in patients with Parkinson’s disease: a cross-sectional survey. Cureus. 2018;10(10); doi: 10.7759/cureus.3412.
 
18.
Caligiore D, Mustile M, Spalletta G, Baldassarre G. Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci Biobehav Rev 2017;72:210–222.DOI: 10.1016/j.neubiorev.2016.11.005.
 
19.
Tomlinson CL, Herd CP, Clarke CE, Meek C, Patel S, Stowe R, et al. Physiotherapy for Parkinson’s disease: a comparison of techniques. Cochrane Database Syst Rev. 2014(6):1–119; doi: 10.1002/14651858.CD002815.pub2.
 
20.
Redecker C, Bilsing A, Csoti I, Fogel W, Ebersbach G, Hauptmann B, et al. Physiotherapy in Parkinson’s disease patients: recommendations for clinical practice. Basal Ganglia. 2014;4(1):35–38; doi: 10.1016/j.baga.2014.03.001.
 
21.
Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson’s disease: current outlook and future challenges. Parkinsonism Related Disord. 2016;22(Suppl 1):60–64; doi: 10.1016/j.parkreldis.2015.09.005.
 
22.
Lina C, Guoen C, Huidan W, Yingqing W, Ying C, Xiaochun C, et al. The effect of virtual reality on the ability to perform activities of daily living, balance during gait, and motor function in parkinson disease patients: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2020;99(10):917–924; doi: 10.1097/PHM.0000000000001447.
 
23.
Khushnood K, Sultan N, Altaf S, Qureshi S, Mehmood R, Awan MMA. Effects of Wii Fit exer-gaming on balance and gait in elderly population: a randomized control trial. JPMA. 2020:1–11; doi: 10.47391/JPMA.565.
 
24.
Lambert KJ, Singhal A, Leung AW. Neurophysiological evidence of motor imagery training in Parkinson’s disease: a case series study. Brain Impairment. 23(2);196–205; doi: 10.1017/BrImp.2021.8.
 
25.
Pelosin E, Barella R, Bet C, Magioncalda E, Putzolu M, Di Biasio F, et al. Effect of group-based rehabilitation combining action observation with physiotherapy on freezing of gait in Parkinson’s disease. Neural Plast. 2018;2018; doi: 10.1155/2018/4897276.
 
26.
Picelli A, Melotti C, Origano F, Waldner A, Fiaschi A, Santilli V, et al. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neuro­rehabil Neural Repair. 2012;26(4):353–361; doi: 10.1177/1545968311424417.
 
27.
Martin JA, Zimmermann N, Scheef L, Jankowski J, Paus S, Schild HH, et al. Disentangling motor planning and motor execution in unmedicated de novo Parkinson’s disease patients: an fMRI study. Neuroimage Clin. 2019;22:101784; doi: 10.1016/j.nicl.2019.101784.
 
28.
Rizzo AS. Virtual reality and disability: emergence and challenge. Disabil Rehabil. 2002;24(11–12):567–569; doi: 10.1080/09638280110111315.
 
29.
Maggio MG, De Cola MC, Latella D, Maresca G, Finocchiaro C, La Rosa G, et al. What about the role of virtual reality in Parkinson disease’s cognitive rehabilitation? Preliminary findings from a randomized clinical trial. J Geriatr Psychiatry Neurol. 2018;31(6):312–318; doi: 10.1177/0891988718807973.
 
30.
Chau B, Humbert S, Shou A. Systemic literature review of the use of virtual reality for rehabilitation in Parkinson disease. Fed Pract. 2021;38(Suppl 1):20; doi: 10.12788/fp.0112.
 
31.
Kashif M, Ahmad A, Bandpei MAM, Gillani SA, Hanif A, Iram H. Effects of virtual reality with Motor Imagery Techniques in patients with Parkinson’s disease: study protocol for a randomized controlled trial. Neurodegener Dis. 2020;20(2–3):90–96; doi: 10.1159/000511916.
 
32.
Artusi CA, Mishra M, Latimer P, Vizcarra JA, Lopiano L, Maetzler W, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Dis. 2018;46:53–56.DOI: 10.1016/j.parkreldis.2017.07.022.
 
33.
Shulman LM, Armstrong M, Ellis T, Gruber-Baldini A, Ho­rak F, Nieuwboer A, et al. Disability rating scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2016;31(10):1455–1465; doi: 10.1002/mds.26649.
 
34.
Physiotherapy RDSf. KNGF Guidelines for physical therapy in patients with Parkinson’s disease. KNGF evidence-based clinical practice guidelines. 2004.
 
35.
Bloem BR, de Vries NM, Ebersbach G. Nonpharmacological treatments for patients with Parkinson’s disease. Mov Disord. 2015;30(11):1504–1520; doi: 10.1002/mds.­26363.
 
36.
Kashif M, Jones S, Haider Darain HI, Raqib A, Butt AA. Factors influencing the community integration of patients following traumatic spinal cord injury: a systematic review. JPMA. 2019;69(1336).
 
37.
Downs S. The Berg Balance Scale. J Physiother. 2015;61(1):46; doi: 10.1016/j.jphys.2014.10.002.
 
38.
Kashif M, Ahmad A, Bandpei MAM, Gilani SA, Iram H, Farooq M. Psychometric properties of the urdu translation of Berg Balance Scale in people with Parkinson’s disease. Int J Environ Res Public Health. 2022;19(4):2346; doi: 10.3390/ijerph19042346.
 
39.
Babaei-Ghazani A, Mohammadi H, Shahidi GA, Habibi SAH, Forogh B, Ahadi T, et al. Reliability and validity of the Persian translation of Berg Balance Scale in Parkinson disease. Aging Clin Exp Res. 2017;29(5):857–62; doi: 10.1007/s40520-016-0682-7.
 
40.
Taghizadeh G, Martinez-Martin P, Fereshtehnejad S-M, Habibi SA, Nikbakht N, Alizadeh NH, et al. Psychometric properties of the Berg balance scale in idiopathic Parkinson’ disease in the drug off-phase. Neurol Sci. 2018;39(12):2175–81; doi: 10.1007/s10072-018-3570-4.
 
41.
Sahin F, Yilmaz F, Ozmaden A, Kotevoglu N, Sahin T, Ku­ran B. Reliability and validity of the Turkish version of the Berg Balance Scale. J Geriatr Phys Ther. 2008;31(1):32–7; doi: 10.1519/00139143-200831010-00006.
 
42.
Qutubuddin AA, Pegg PO, Cifu DX, Brown R, McNamee S, Carne W. Validating the Berg Balance Scale for patients with Parkinson’s disease: a key to rehabilitation evaluation. Arch Phys Med Rehabil. 2005;86(4):789–792; doi: 10.1016/j.apmr.2004.11.005.
 
43.
Taghizadeh G, Martinez-Martin P, Meimandi M, Habibi SAH, Jamali S, Dehmiyani A, et al. Barthel index and modified Rankin Scale: psychometric properties during medication phases in idiopathic Parkinson disease. Ann Phys Rehabil Med. 2020;63(6):500–504; doi: 10.1007/s10072-018-3570-4.
 
44.
Galeoto G, Lauta A, Palumbo A, Castiglia S, Mollica R, Santilli V, et al. The Barthel Index: Italian translation, adaptation and validation. Int J Neurol Neurother. 2015;2(2):2378–3001; doi: 10.23937/2378-3001/2/2/1028.
 
45.
Rezaei S, Moghadam AD, Khodadadi N, Rahmatpour P. Functional independence measure in Iran: a confirmatory factor analysis and evaluation of ceiling and floor effects in traumatic brain injury patients. Arch Trauma Res. 2015;4(4); doi: 10.5812/atr.25363.
 
46.
Prodinger B, O’Connor RJ, Stucki G, Tennant A. Establishing score equivalence of the Functional Independence Measure motor scale and the Barthel Index, utilising the International Classification of Functioning, Disability and Health and Rasch measurement theory. J Rehabil Med. 2017;49(5):416–422; doi: 10.2340/16501977-2225.
 
47.
Ferrazzoli D, Ortelli P, Madeo G, Giladi N, Petzinger GM, Frazzitta G. Basal ganglia and beyond: the interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci Biobehav Rev. 2018;90:294–308; doi: 10.1016/j.neubiorev.2018.05.007.
 
48.
da Costa Capato TT, Tornai J, Ávila P, Barbosa ER, Piemonte MEP. Randomized controlled trial protocol: balance training with rhythmical cues to improve and maintain balance control in Parkinson’s disease. BMCNeurol. 2015;15(1):162–169; doi: 10.1186/s12883-015-0418-x.
 
49.
Bonassi G, Pelosin E, Ogliastro C, Cerulli C, Abbruzzese G, Avanzino L. Mirror visual feedback to improve bradykinesia in Parkinson’s disease. Neural Plast. 2016;2016; doi: 10.1155/2016/8764238.
 
50.
Park D-S, Lee G. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation. J Neuroeng Rehabil. 2014;11(1):99–107; doi: 10.1186/1743-0003-11-99.
 
51.
Mhatre PV, Vilares I, Stibb SM, Albert MV, Pickering L, Marciniak CM, et al. Wii Fit balance board playing improves balance and gait in Parkinson disease. PM R. 2013;5(9):769–777; doi: 10.1016/j.pmrj.2013.05.019.
 
52.
Albiol-Pérez S, Gil-Gómez J-A, Quilis J-AL, Gil-Gómez H, Tomás MTM, García MF, et al., editors. Static Weight Transferences in Patients with Parkinson’s Disease using the Nintendo Wii Balance Board. Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques; 2015; doi: 10.1145/2838944.2838962.
 
53.
Zalecki T, Surówka AD, Gorecka-Mazur A, Pietraszko W, Novak P, Moskala M, et al. Visual feedback training using WII Fit improves balance in Parkinson’s disease. Folia Med Cracov. 2013;53(1):65–78.
 
54.
Holmes JD, Jenkins ME, Johnson AM, Hunt MA, Clark RA. Validity of the Nintendo Wii® balance board for the assessment of standing balance in Parkinson’s disease. Clin Rehabil. 2013;27(4):361–366; doi: 10.1177/0269215512458684.
 
55.
Quelhas R, Costa M. Anxiety, depression, and quality of life in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 2009;21(4):413–419; doi: 10.1176/jnp.2009.21.4.413.
 
56.
Smits EJ, Tolonen AJ, Cluitmans L, Van Gils M, Conway BA, Zietsma RC, et al. Standardized handwriting to assess bradykinesia, micrographia and tremor in Parkinson’s disease. PloS One. 2014;9(5); doi: 10.1371/journal.pone.0097614.
 
57.
Plotnik M, Shema S, Dorfman M, Gazit E, Brozgol M, Giladi N, et al. A motor learning-based intervention to ameliorate freezing of gait in subjects with Parkinson’s disease. J Neurol. 2014;261(7):1329–1339; doi: 10.1007/s00415-014-7347-2.
 
58.
Schlick C, Ernst A, Bötzel K, Plate A, Pelykh O, Ilmberger J. Visual cues combined with treadmill training to improve gait performance in Parkinson’s disease: a pilot randomized controlled trial. Clin Rehabil. 2016;30(5):463–471; doi: 10.1007/s00415-014-7347-2.
 
59.
Kashif M, Ahmad A, Bandpei MAM, Syed HA, Raza A, Sana V. A Randomized controlled trial of motor imagery combined with virtual reality techniques in patients with Parkinson’s disease. J Pers Med. 2022;12(3):450; doi: 10.3390/jpm12030450.
 
60.
Kashif M, Ahmad A, Bandpei MAM, Gilani SA, Hanif A, Iram H. Combined effects of virtual reality techniques and motor imagery on balance, motor function and activities of daily living in patients with Parkinson’s disease: a randomized controlled trial. BMC Geriatrics. 2022;22(1):381; doi: 10.1186/s12877-022-03035-1.
 
61.
Hu MT, Szewczyk-Królikowski K, Tomlinson P, Nithi K, Rolinski M, Murray C, et al. Predictors of cognitive impairment in an early stage Parkinson’s disease cohort. Mov Disord. 2014;29(3):351–359; doi: 10.1002/mds.25748.
 
62.
Dubois B, Burn D, Goetz C, Aarsland D, Brown RG, Broe GA, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007;22(16):2314–2324; doi: 10.1002/mds.21844.
 
63.
Lucza T, Karádi K, Kállai J, Weintraut R, Janszky J, Makkos A, et al. Screening mild and major neurocognitive disorders in Parkinson’s disease. Behavioural neurology. 2015;2015; doi: 10.1155/2015/983606.
 
64.
Hoops S, Nazem S, Siderowf A, Duda J, Xie S, Stern M, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73(21):1738–1745; doi: 10.1212/WNL.0b013e3181e7948a.
 
65.
Yu R-L, Lee W-J, Li J-Y, Chang Y-Y, Chen C-C, Lin J-J, et al. Evaluating mild cognitive dysfunction in patients with Parkinson’s disease in clinical practice in Taiwan. Sci Rep. 2020;10(1):1–9; doi: 10.1038/s41598-020-58042-2.
 
66.
Lessig S, Nie D, Xu R, Corey-Bloom J. Changes on brief cognitive instruments over time in Parkinson’s disease. Mov Disord. 2012;27(9):1125–1128; doi: 10.1002/mds.25070.
 
67.
Biundo R, Weis L, Bostantjopoulou S, Stefanova E, Falup-Pecurariu C, Kramberger M, et al. MMSE and MoCA in Parkinson’s disease and dementia with Lewy bodies: a multicenter 1-year follow-up study. J Neural Transm. 2016;123(4):431–438; doi: 10.1007/s00702-016-1517-6.
 
68.
Martínez-Martín P, Gil-Nagel A, Gracia LM, Gómez JB, Martinez-Sarries J, Bermejo F, et al. Unified Parkinson’s disease rating scale characteristics and structure. Mov Disord. 1994;9(1):76–83; doi: 10.1002/mds.870090112.
 
69.
Stebbins GT, Goetz CG. Factor structure of the Unified Parkinson’s Disease Rating Scale: motor examination section. Mov Disord. 1998;13(4):633–6; doi: 10.1002/mds.870130404.
 
70.
Louis ED, Lynch T, Marder K, Fahn S. Reliability of patient completion of the historical section of the Unified Parkinson’s Disease Rating Scale. Mov Disord. 1996;11(2):185–192; doi: 10.1002/mds.870110212.
 
71.
Richards M, Marder K, Cote L, Mayeux R. Interrater reliability of the Unified Parkinson’s Disease Rating Scale motor examination. Mov Disord. 1994;9(1):89–91; doi: 10.1002/mds.870090114.
 
72.
Camicioli R, Grossmann SJ, Spencer PS, Hudnell K, Anger WK. Discriminating mild parkinsonism: methods for epidemiological research. Mov Disord. 2001;16(1):33–40; doi: 10.1002/1531-8257(200101)16:1<33::aid-mds1014>3.0.co;2-w.
 
73.
Bennett DA, Shannon K, Beckett LA, Goetz C, Wilson R. Metric properties of nurses’ ratings of parkinsonian signs with a modified Unified Parkinson’s Disease Rating Scale. Neurology. 1997;49(6):1580–1587; doi: 10.1212/wnl.49.6.1580.
 
74.
Uc EY, Doerschug KC, Magnotta V, Dawson JD, Thomsen TR, Kline JN, et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology. 2014;83(5):413–425; doi: 10.1212/WNL.0000000000000644.
 
75.
Pathak A, Redmond JA, Allen M, Chou KL. A noninvasive handheld assistive device to accommodate essential tremor: a pilot study. Mov Disord. 2014;29(6):838–42; doi: 10.1002/mds.25796.
 
76.
Okuma Y. Practical approach to freezing of gait in Parkinson’s disease. Pract Neurol. 2014;14(4):222–230; doi: 10.1136/practneurol-2013-000743.
 
77.
Bryant MS, Rintala DH, Graham JE, Hou JG, Protas EJ. Determinants of use of a walking device in persons with Parkinson’s disease. Arch Phys Med Rehabil. 2014;95(10):1940–5; doi: 10.1016/j.apmr.2014.06.002.
 
78.
Ferreira FV, Cielo CA, Trevisan ME. Respiratory muscle strength, body posture, vocal intensity and maximum phonation times in Parkinson Disease [in Portuguese]. Rev CEFAC. 2012;14(2):361–369; doi:10.1590/1806-3713/e20180148.
 
79.
Fernandes Â, Coelho T, Vitória A, Ferreira A, Santos R, Rocha N, et al. Standing balance in individuals with Parkinson’s disease during single and dual-task conditions. Gait Posture. 2015;42(3):323–328; doi: 10.1016/j.gaitpost.2015.06.188.
 
80.
Kanitz AC, Delevatti RS, Reichert T, Liedtke GV, Ferrari R, Almada BP, et al. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Experimental gerontology. 2015;64:55–61; doi: 10.1016/j.exger.2015.02.013.
 
81.
Siega J, da Silva AZ, de Paula Ferreira M, Yamaguchi B, Israel VL. The acute effect of aquatic physiotherapy on heart rate, blood pressure, and double product in individuals with Parkinson’s disease. Physiother Quart. 2021;29(4):70; doi: https://doi.org/10.5114/pq.202....
 
82.
Weiss PL, Rand D, Katz N, Kizony R. Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil. 2004;1(1):12; doi: 10.1186/1743-0003-1-12.
 
83.
Liao Y-Y, Yang Y-R, Cheng S-J, Wu Y-R, Fuh J-L, Wang R-Y. Virtual reality–based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabil Neural Repair. 2015;29(7):658–667; doi: 10.1177/1545968314562111.
 
84.
Abbruzzese G, Avanzino L, Marchese R, Pelosin E. Action observation and motor imagery: innovative cognitive tools in the rehabilitation of Parkinson’s disease. Parkinsons Dis. 2015;2015:1–9; doi: 10.1155/2015/124214.
 
eISSN:2544-4395
Journals System - logo
Scroll to top