ORIGINAL PAPER
Effect of structured physical therapy program on patients with diabetes and mild cognitive impairment: randomised controlled trial
 
More details
Hide details
1
Department of Cardiovascular/Respiratory Disorders and Geriatrics, Faculty of Physical Therapy, Al Hayah University, Cairo, Egypt
 
2
Department of Cardiovascular/Respiratory Disorders and Geriatrics, Cairo University, Cairo, Egypt
 
3
Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
 
4
Department of Neurology, Faculty Medicine, Al-Azhar University, Cairo, Egypt
 
 
Submission date: 2023-02-01
 
 
Acceptance date: 2023-05-30
 
 
Publication date: 2024-06-21
 
 
Corresponding author
Asmaa Embaby Sewillam   

Faculty of Physical Therapy, Al Hayah University, villa 109, Alyasmeen 7, First compound, New Cairo, Cairo, Egypt
 
 
Physiother Quart. 2024;32(2):100-106
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The mild cognitive impairment (MCI) refers to a condition that falls in between dementia and the normal cognitive ageing process. Aim of the study: to explore how a physical therapy rehabilitation program affected patients with type 2 diabetes mellitus (T2DM) and MCI.

Methods:
The study included 37 elderly patients with T2DM and MCI from Al-Azhar University Hospital aged from 60 to 75 years old. After a physician’s referral, they were randomly allocated into two groups. Group A: 27 patients, underwent a three-session per week, 60-minute physical therapy rehabilitation program in addition to medical treatment. The twelve-week program also included resistive exercise, stretching exercises, and aerobic treadmill walking. The 10 patients in Group B only received medical treatment for a total of twelve weeks. Researchers assessed Glycosylated haemoglobin (HbA1c), the p300 neurophysiological test, Mini-Mental State Examination (MMSE) scale, and Montreal Cognitive Assessment (MOCA).

Results:
There were significantly decreased HbA1c and P300 post-treatment compared to pre-treatment within the study group (p = 0.0001 and p = 0.0001, respectively) and control group (p = 0.005 and p = 0.0001, respectively). The MOCA significantly increased post-treatment compared to pre-treatment within the study group, but there was no significant difference in the MOCA between pre- and post-treatment in the control group. The study group had decreased HbA1c, and increased MMS, MOCA, and P300 (13.72, 19.34, 18.7, and 7.2%, respectively) compared to the control group (11.06, 11.06, 9.3, 5.98%, respectively).

Conclusions:
Physical therapy rehabilitation programs are important in helping patients with T2DM for improving their memory and cognitive function as well as decreasing the MCI progression.

REFERENCES (34)
1.
Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci. 2016;130(20):1807–22; doi: 10.1042/cs20160397.
 
2.
Zhang X, Su J, Gao C, Ni W, Gao X, Li Y, Zhang J, Lei Y, Gu Y. Progression in vascular cognitive impairment: Pathogenesis, neuroimaging evaluation, and treatment. Cell Transplant. 2019;28:18–25; doi: 10.1177/0963689718815820.
 
3.
Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomi­lehto J, Winblad B, Sulkava R, Kivipelto M. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology. 2010;75(13):1195–1202; doi: 10.1212/WNL.0b013e3181f4d7f8.
 
4.
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther. 2016;8:23–7; doi: 10.1186/s13195-016-0188-8.
 
5.
Rojas M, Chávez-Castillo M, Bautista J, Ortega Á, Na­va M, Salazar J, Díaz-Camargo E, Medina O, Rojas-Quintero J, Bermúdez V. Alzheimer’s disease and type 2 diabetes mellitus: pathophysiologic and pharmacotherapeutics links. World J Diabetes. 2021;12(6):745–66; doi: 10.4239/wjd.v12.i6.745.
 
6.
Juul Rasmussen I, Qvist Thomassen J, Frikke-Schmidt R. Impact of metabolic dysfunction on cognition in humans. Curr Opin Lipidol. 2021;32:55–61; doi: 10.1097/mol.0000000000000723.
 
7.
Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, Gronseth GS, Marson D, Prings­heim T, Day GS, Sager M, Stevens J, Rae-Grant A. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126–35; doi: 10.1212/wnl.0000000000004826.
 
8.
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92; doi: 10.1001/archneur.58.12.1985.
 
9.
Petersen RC. Mild cognitive impairment. Continuum. 2016;22(2):404–18; doi: 10.1212/con.0000000000000313.
 
10.
Tricco AC, Soobiah C, Berliner S, Ho JM, Ng CH, Ashoor HM, Chen MH, Hemmelgarn B, Straus SE. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185(16):1393–401; doi: 10.1503/cmaj.130451.
 
11.
Ladeira RB, Diniz BS, Nunes PV, Forlenza OV. Combining cognitive screening tests for the evaluation of mild cognitive impairment in the elderly. Clinics. 2009;64(10):967–73; doi: 10.1590/s1807-59322009001000006.
 
12.
Vega JN, Newhouse PA. Mild cognitive impairment: diagnosis, longitudinal course, and emerging treatments. Curr Psychiatry Rep. 2014;16(10):490–8; doi: 10.1007/s11920-014-0490-8.
 
13.
Simó R, Ciudin A, Simó-Servat O, Hernández C. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes-the diabetologist’s perspective. Acta Diabetol. 2017;54(5):417–424; doi: 10.1007/s00592-017-0970-5.
 
14.
Huang J, Meyer JS, Zhang Z, Wei J, Hong X, Wang J, Wen H, Wu W, Wu J, Chowdhury MH. Progression of mild cognitive impairment to Alzheimer’s or vascular dementia versus normative aging among elderly Chinese. Curr Alzheimer Res. 2005;2(5):571–8; doi: 10.2174/156720505774932223.
 
15.
Choinski M, Szelag E, Wolak T, Szymaszek A. Neuropsychological correlates of P300 parameters in individuals with aphasia. Int J Lang Commun Disord. 2023;5(2)8:256–259; doi: 10.1111/1460-6984.12781.
 
16.
Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:332–7; doi: 10.1136/bmj.c332.
 
17.
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9; doi: 10.1111/j.1532-5415.2005.53221.x.
 
18.
Kour H, Kothiwale VA, Goudar SS. Impact of structured exercise therapy on impaired cognitive function among young adults diagnosed newly with type 2 diabetes mellitus – a randomized controlled trial. Med J DY Patil Univ. 2020;13:341–349; doi: 10.4103/mjdrdypu.mjdrdypu_185_19.
 
19.
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. Genes. 2019;10:105–8; doi: 10.3390/genes10090720.
 
20.
Liu X, Jiang Y, Peng W, Wang M, Chen X, Li M, Ruan Y, Sun S, Yang T, Yang Y, Yan F, Wang F, Wang Y. Association between physical activity and mild cognitive impairment in community-dwelling older adults: depression as a mediator. Front Aging Neurosci. 2022;14:964886; doi: 10.3389/fnagi.2022.964886.
 
21.
Venegas-Sanabria LC, Cavero-Redondo I, Martínez-Vizcaino V, Cano-Gutierrez CA, Álvarez-Bueno C. Effect of multicomponent exercise in cognitive impairment: a systematic review and meta-analysis. BMC Geriatr. 2022;22:617–23; doi: 10.1186/s12877-022-03302-1.
 
22.
Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9; doi: 10.1001/archneurol.2009.307.
 
23.
Sherman DS, Mauser J, Nuno M, Sherzai D. The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsy­chological measures. Neuropsychol Rev. 2017;27(4):440–84; doi: 10.1007/s11065-017-9363-3.
 
24.
Blumenthal JA, Smith PJ, Mabe S, Hinderliter A, Lin PH, Liao L, Welsh-Bohmer KA, Browndyke JN, Kraus WE, Doraiswamy PM, Burke JR, Sherwood A. Lifestyle and neurocognition in older adults with cognitive impairments: a randomized trial. Neurology. 2019;92(3):e212–23; doi: 10.1212/wnl.0000000000006784.
 
25.
Pedroso RV, Cancela JM, Ayán C, Stein AM, Fuzaro G, Costa JLR, Fraga FJ, Santos-Galduróz RF. Effects of physical exercise on the p300 of elderly with Alzheimer’s disease. J Phys Act Health. 2018;15(6):403–10; doi: 10.1123/jpah.2017-0179.
 
26.
Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(23):1443–50; doi: 10.1136/bjsports-2015-095699.
 
27.
Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Disord. 2014;38(5–6):347–65; doi: 10.1159/000365388.
 
28.
ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, Liu-Ambrose T. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49(4):248–54; doi: 10.1136/bjsports-2013-093184.
 
29.
Panza GA, Taylor BA, MacDonald HV, Johnson BT, Za­leski AL, Livingston J, Thompson PD, Pescatello LS. Can exercise improve cognitive symptoms of Alzheimer’s disease? J Am Geriatr Soc. 2018;66(3):487–95; doi: 10.1111/jgs.15241.
 
30.
Sink KM, Espeland MA, Castro CM, Church T, Cohen R, Dodson JA, Guralnik J, Hendrie HC, Jennings J, Katula J, Lopez OL, McDermott MM, Pahor M, Reid KF, Rushing J, Verghese J, Rapp S, Williamson JD; LIFE Study Investigators. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the life randomized trial. JAMA. 2015;314(8):781–90; doi: 10.1001/jama.2015.9617.
 
31.
Butler M, McCreedy E, Nelson VA, Desai P, Ratner E, Fink HA, Hemmy LS, McCarten JR, Barclay TR, Brasure M, Davila H, Kane RL. Does cognitive training prevent cognitive decline? A systematic review. Ann Intern Med. 2018;168:63–8; doi: 10.7326/m17-1531.
 
32.
Chen Y, Qin J, Tao L, Liu Z, Huang J, Liu W, Chen L, Tao J. Effects of tai chi chuan on cognitive function in adults 60 years or older with type 2 diabetes and mild cognitive impairment in China: a randomized clinical trial. JAMA Netw Open. 2023;6(4):e237004; doi: 10.1001/jamanetworkopen.2023.7004.
 
33.
Lamb SE, Sheehan B, Atherton N, Nichols V, Collins H, Mistry D, Dosanjh S, Slowther AM, Khan I, Petrou S, Lall R; DAPA Trial investigators. Dementia and physical activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ. 2018;361:16–75; doi: 10.1136/bmj.k1675.
 
34.
Atherton N, Bridle C, Brown D, Collins H, Dosanjh S, Grif­fiths F, Hennings S, Khan K, Lall R, Lyle S, McShane R, Mistry D, Nichols V, Petrou S, Sheehan B, Slowther A-M, Thorogood M, Withers E, Zeh P, Lamb SE. Dementia and physical activity (DAPA) – an exercise intervention to improve cognition in people with mild to moderate dementia: study protocol for a randomized controlled trial. Trials. 2016;17:165–69; doi: 10.1186/s13063-016-1288-2.
 
eISSN:2544-4395
Journals System - logo
Scroll to top