ORIGINAL PAPER
Evaluation of the surface temperature distribution in the feet of patients with type 2 diabetes using the thermovision method
 
More details
Hide details
1
Department of Physiotherapy in Dysfunctions of Organs of Movement, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
 
2
Department of Physiotherapy in Neurology and Paediatrics, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
 
3
Státní Léčebné Lázně Janské Lázně, Janské Lázně, Czech Republic
 
 
Submission date: 2023-01-10
 
 
Acceptance date: 2023-02-21
 
 
Publication date: 2023-03-06
 
 
Physiother Quart. 2023;31(2):92-97
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Diabetic foot syndrome (DFS) is one of the most common complications of diabetes. The purpose of the study was to evaluate the distribution of superficial temperature and microcirculation in the feet of patients with type 2 diabetes.

Methods:
52 patients (the study group) with type 2 diabetes participated in the study, diagnosed by a physician while treated at “Centrum Medyczne” Provincial Specialist Healthcare Centre as part of the Diabetic Foot Syndrome Prevention Programme. The control group included 33 patients without diabetes. Superficial dorsal and plantar temperature of both feet was measured in all participants. The measurements were taken using a ThermoVision FLIR SYSTEM T335.

Results:
In both study groups, the temperature of the dorsal side of the foot was higher than the temperature of the plantar side. The observed difference in the control group was clearly larger than in the group of diabetic patients, and amounted to 1.7°C and 1.0°C. In the patients with diabetes the plantar temperature was higher by an average of 2.2°C, and the dorsal temperature was higher by an average of 1.5°C compared to the control group.

Conclusions:
Thermal imaging can be used as a supplement to DFS diagnostics. Recommending daily self-monitoring of surface temperature with thermography for diabetic patients can help reduce the risk of neurotrophic changes in the foot.

 
REFERENCES (25)
1.
Duarte AA, Shahriar M, Golubnitschaja O. Diabetes care in figures: current pitfalls and future scenario. EPMA J. 2018;9(2):125–131; doi: 10.1007/s13167-018-0133-y.
 
2.
Rymkiewicz E, Sołdaj-Bukszyńska K, Kowalik M, Lis B, Dzida G. Diabetic foot syndrome as an interdisciplinary problem. J Educ Health Sport. 2017;7(8):576–582; doi: 10.5281/zenodo.886024.
 
3.
Tuttolomondo A, Maida C, Pinto A. Diabetic foot syndrome: Immuneinflammatory features as possible cardiovascular markers in diabetes. World J Orthop. 2015;18(6):62–76; doi: 10.5312/wjo.v6.i1.62.
 
4.
Bakker K, Apelqvist J, Schaper NC. Practical guidelines on the management and prevention of the diabetic foot 2011. Diabetes Metab Res Rev. 2012;28(Suppl 1):225–231; doi: 10.1002/dmrr.2253.
 
5.
Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(948):1711–1717; doi: 10.1016/S01406736(05)67696-9.
 
6.
Bagavathiappan S, Philip J, Jayakumar T, Raj B, Narayana P, Rao S, et al. Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique. Diabetes Sci Technol. 2010;4(6):1386–1392; doi: 10.1177/193229681000400613.
 
7.
Ren W, Xu L, Zheng X, Pu F, Li D, Fan Y. Effect of different thermal stimuli on improving microcirculation in the contralateral foot. Biomed Eng Online. 2021;20(1):14; doi: 10.1186/s12938-021-00849-9.
 
8.
Murphy GA, Singh-Moon RP, Mazhar A, Cuccia DJ, Rowe VL, Armstrong DG. Quantifying dermal microcirculatory changes of neuropathic and neuroischemic diabetic foot ulcers using spatial frequency domain imaging: a shade of things to come? BMJ Open Diab Res Care. 2020;8(2):1–8; doi: 10.1136/bmjdrc-2020-001815.
 
9.
Lenhard W, Lenhard A. Computation of effect sizes. Psychometrica. Available in 2016 from: https://www.psychometrica.de/e...; doi: 10.13140/RG.2.2.17823.92329.
 
10.
Ring F. Thermal imaging today and its relevance to diabetes. J Diabetes Sci Technol. 2010;4(4):857–862; doi: 10.1177/193229681000400414.
 
11.
Ndip A, Ebah L, Mbako A. Neuropathic diabetic foot ulcers – evidence-to-practice. Int J Gen Med. 2012;5:129–134; doi: 10.2147/IJGM.S10328.
 
12.
Lazzarini PA, Pacella RE, Armstrong DG, van Netten JJ. Diabetes-related lower-extremity complications are a leading cause of the global burden of disability. Diabet Med. 2018;9:1297–1299; doi: 10.1111/dme.13680.
 
13.
van Netten JJ, van Baal JG, Liu CH, van der Heijden F, Bu SA. Infrared thermal imaging for automated detection of diabetic foot complications. J Diabetes Sci Technol. 2013;7(5):1122–1129; doi: 10.1177/193229681300700504.
 
14.
Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–401.
 
15.
Kolarsick P, Kolarsick MA, Goodwin C. Anatomy and physiology of the skin. J Dermatol Nurses Assoc. 2011;3(4):203–213; doi: 0.1097/JDN.0b013e3182274a98.
 
16.
James D, Berger T, Elston D. Andrews’ diseases of the skin: clinical dermatology. 10th ed. Philadelphia: Elsevier Saunders; 2006.
 
17.
Braverman IM. The cutaneous microcirculation. J Investig Dermatol Symp Proc. 2000; 5(1):3–9; doi: 10.1046/j.1087-0024.2000.00010.x.
 
18.
Pafili K, Papanas N. Thermography in the follow up of the diabetic foot: best to weigh the enemy more mighty than he seems. Expert Rev Med Devices. 2015;12(2):131–133; doi: 10.1586/17434440.2015.990378.
 
19.
Vilcahuaman L, Harba R, Canals R, Zequera M, Wilches C, Arista MT, et al. Detection of diabetic foot hyperthermia by infrared imaging. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4831–4834; doi: 10.1109/EMBC.2014.6944705.
 
20.
Armstrong DG, Holtz-Neiderer K, Wendel C, Mohler MJ, Kimbriel HR, Lavery LA. Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients. Am J Med. 2007;120(12):1042–1046; doi: 10.1016/j.amjmed.2007.06.028.
 
21.
Lavery LA, Higgins KR, Lanctot DR, Constantinides GP, Zamorano RG, Armstrong DG, et al. Home monitoring of foot skin temperatures to prevent ulceration. Diabetes Care. 2004;27(11):2642–2647; doi: 10.2337/diacare.27.11.2642.
 
22.
Lavery LA, Higgins KR, Lanctot DR, Constantinides GP, Zamorano RG, Athanasiou KA, et al. Preventing diabetic foot ulcer recurrence in high-risk patients: use of temperature monitoring as a self-assessment tool. Diabetes Care. 2007;30(1):14–20; doi: 10.2337/dc06-1600.
 
23.
Papanas N, Papatheodorou K, Papazoglou D, Monas­tiriotis C, Maltezos E. Foot temperature in type 2 diabetic patients with or without peripheral neuropathy. Exp Clin Endocrinol Diabetes. 2009;117(1):44–47; doi: 10.1055/s-2008-1081498.
 
24.
Kimura T, Thorhauer ED, Kindig MW, Shofer JB, Sangeorzan BJ, Ledoux WR. Neuropathy, claw toes, intrinsic muscle volume, and plantar aponeurosis thickness in diabetic feet. BMC Musculoskelet Disord. 2020;21:485–495; doi: 10.1186/s12891-020-03503-y.
 
25.
Cheng Y-Ch, Lung Ch-W, Jan Y-K, Kuo F-Ch, Lin Y-S, Lo Y-Ch, Lia BY. Evaluating the far-infrared radiation bioeffects on micro vascular dysfunction, nervous system, and plantar pressure in diabetes mellitus. Int J Low Extrem Wounds. 2020;19(2):125–131; doi: 10.1177/1534734619880741.
 
eISSN:2544-4395
Journals System - logo
Scroll to top