Efficacy of diadynamic currents in the treatment of musculoskeletal pain: a systematic review
 
More details
Hide details
1
Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
 
 
Submission date: 2021-11-01
 
 
Acceptance date: 2021-12-15
 
 
Publication date: 2023-04-12
 
 
Physiother Quart. 2023;31(3):1-19
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Musculoskeletal pain (MSP) is one of the main causes of chronic pain in adults and the main reason for disability. Diadynamic currents (DDC) are described as classic electrotherapy modalities for MSP management, however, the available information and studies that support their use are limited. To describe the efficacy of DDC in the treatment of MSP.

Methods:
Randomized clinical trials (RCTs) were identified in PubMed, Scopus, Web of Science, Cinahl, and Science Direct databases dated August 1, 2021. Three independent investigators reviewed articles titles and abstracts to determine their eligibility, risk of bias and quality using the Cochrane Rob2 tool and the PEDro scale. Pain reduction was considered as the main outcome and changes in range of motion, strength, or disability/functionality as secondary outcomes.

Results:
13 RCTs were obtained after eliminating duplicates, reviewing titles, abstracts and applying the selection criteria. The MSP conditions included joint (n = 9) and soft tissue disorders (n = 5). The studies had a low risk of bias and good quality with average scores of 7 for the PEDro scale. A pain reduction was observed for DDC treatments, as well as an improvement in functionality in favor of experimental groups (p < 0.05).

Conclusions:
DDC are effective in reducing MSP and improving functionality compared to other electrotherapy modalities. This review made it possible to generate dosage recommendations and establish that the best therapeutic results are achieved with combined diadynamic applications.

REFERENCES (95)
1.
Malik KM, Beckerly R, Imani F. Musculoskeletal disorders a universal source of pain and disability misunderstood and mismanaged: a critical analysis based on the U.S. model of care. Anesth Pain Med. 2018;8(6):e85532; doi: 10.5812/aapm.85532.
 
2.
GBD 2015 Disease and injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 [published correction Lancet. 2017;389(10064):e1]. Lancet. 2016;388(10053):1545–1602; doi: 10.1016/S0140-6736(16)31678-6.
 
3.
March L, Smith EUR, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 2014; 28(3):353–66; doi: 10.1016/j.berh.2014.08.002.
 
4.
Vargas C, Bilbeny N, Balmaceda C, Rodríguez MF, Zit­ko P, Rojaset R, et al. Costs and consequences of chronic pain due to musculoskeletal disorders from a health system perspective in Chile. Pain Rep. 2018;3(5):e656; doi:10.1097/PR9.0000000000000656.
 
5.
Perrot S, Cohen M, Barke A, Korwisi B, Rief W, Treede R-D, et al. The IASP classification of chronic pain for ICD-11: chronic secondary musculoskeletal pain. Pain. 2019;160(1):77–82; doi:10.1097/j.pain.0000000000001389.
 
6.
Jordan KP, Kadam UT, Hayward R, Porcheret M, Young C, Croft P. Annual consultation prevalence of regional musculoskeletal problems in primary care: an observational study. BMC Musculoskelet Disord. 2010;11:144; doi:10.1186/1471-2474-11-144.
 
7.
Babatunde OO, Jordan JL, Van der Windt DA, Hill JC, Foster NE, Protheroe J. Effective treatment options for musculoskeletal pain in primary care: a systematic overview of current evidence. PLoS One. 2017;12(6):e0178621; doi: 10.1371/journal.pone.0178621.
 
8.
Puntillo F, Giglio M, Paladini A, Paladini A, Perchiazzi G, Viswanath O, Urits I, et al. Pathophysiology of musculoskeletal pain: a narrative review. Ther Adv Musculoskelet Dis. 2021;13:1759720X21995067; doi: 10.1177/1759720X21995067.
 
9.
Blyth FM, Briggs AM, Schneider CH, Hoy DG, March LM. The global burden of musculoskeletal pain – where to from here? Am J Public Health. 2019;109(1):35–40; doi: 10.2105/AJPH.2018.304747.
 
10.
Pelletier R, Higgins J, Bourbonnais D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet Disord. 2015;16:25; doi: 10.1186/s12891-015-0480-y.
 
11.
Arendt-Nielsen L, Fernández-de-Las-Peñas C, Graven-Nielsen T. Basic aspects of musculoskeletal pain: from acute to chronic pain. J Man Manip Ther. 2011;19(4):186–193; doi: 10.1179/106698111X13129729551903.
 
12.
van Griensven H, Schmid A, Trendafilova T, Low M. Central Sensitization in Musculoskeletal Pain: Lost in Translation?. J Orthop Sports Phys Ther. 2020;50(11):592–596; doi: 10.2519/jospt.2020.0610.
 
13.
Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9):1976–1982; doi: 10.1097/j.pain.0000000000001939.
 
14.
Lin I, Wiles L, Waller R, Goucke R, Nagree Y, Gibberdet M, et al. What does best practice care for musculoskeletal pain look like? Eleven consistent recommendations from high-quality clinical practice guidelines: systematic review. Br J Sports Med. 2020;54(2):79–86; doi: 10.1136/bjsports-2018-099878.
 
15.
Lin I, Wiles LK, Waller R, Goucke R, Nagree Y, Gibberd M, et al. Poor overall quality of clinical practice guidelines for musculoskeletal pain: a systematic review. Br J Sports Med. 2018;52(5):337–343; doi: 10.1136/bjsports-2017-098375.
 
16.
Dowell D, Haegerich TM, Chou R. CDC Guideline for prescribing opioids for chronic pain –United States, 2016. JAMA. 2016;315(15):1624–1645; doi: 10.1001/jama.2016.1464.
 
17.
George SZ, Goode AP. Physical therapy and opioid use for musculoskeletal pain management: competitors or companions? Pain Rep. 2020;5(5):e827; doi: 10.1097/PR9.0000000000000827.
 
18.
Chou R, Deyo R, Friedly J, Skelly A, Hashimoto R, Wei­mer M, et al. Nonpharmacologic therapies for low back pain: a systematic review for an American College of Physicians Clinical practice guideline. Ann Intern Med. 2017;166(7):493–505; doi: 10.7326/M16-2459.
 
19.
Tunwattanapong P, Kongkasuwan R, Kuptniratsaikul V. The effectiveness of a neck and shoulder stretching exercise program among office workers with neck pain: a randomized controlled trial. Clin Rehabil. 2016;30(1):64–72; doi: 10.1177/0269215515575747.
 
20.
Haik MN, Alburquerque-Sendín F, Moreira RF, Pires ED, Camargo PR. Effectiveness of physical therapy treatment of clearly defined subacromial pain: a systematic review of randomised controlled trials. Br J Sports Med. 2016;50(18):1124–1134; doi: 10.1136/bjsports-2015-095771.
 
21.
Barreto TW, Svec JH. Chronic neck pain: nonpharmacologic treatment. Am Fam Physician. 2019;100(3):180–182.
 
22.
Drebenstedt C. Nonpharmacological pain therapy for chronic pain.. Z Gerontol Geriatr. 2018;51(8):859–864; doi: 10.1007/s00391-018-01465-4.
 
23.
Moffett J, McLean S. The role of physiotherapy in the management of non-specific back pain and neck pain. Rheumatology. 2006;45(4):371–378; doi: 10.1093/rheumatology/kei242.
 
24.
Kroeling P, Gross A, Houghton PE, Cervical Overview Group. Electrotherapy for neck disorders. Cochrane Database Syst Rev. 2005;2:CD004251; doi: 10.1002/14651858.CD004251.pub3.
 
25.
Facci LM, Nowotny JP, Tormem F, Trevisani VF. Effects of transcutaneous electrical nerve stimulation (TENS) and interferential currents (IFC) in patients with nonspecific chronic low back pain: randomized clinical trial. Sao Paulo Med J. 2011;129(4):206–216; doi: 10.1590/s1516-31802011000400003.
 
26.
Binny J, Joshua Wong NL, Garga S, Lin C-WC, Maher CG, McLachlan AJ, et al. Transcutaneous electric nerve stimulation (TENS) for acute low back pain: systematic review. Scand J Pain. 2019;19(2):225–233; doi: 10.1515/sjpain-2018-0124.
 
27.
Page MJ, Green S, Kramer S, Johnston RV, McBain B, Buchbinder R. Electrotherapy modalities for adhesive capsulitis (frozen shoulder). Cochrane Database Syst Rev. 2014;(10):CD011324; doi: 10.1002/14651858.CD011324.
 
28.
Hawk C, Minkalis AL, Khorsan R, Daniels CJ, Homack D, Gliedt JA, et al. Systematic review of nondrug, nonsurgical treatment of shoulder conditions. J Manipulative Physiol Ther. 2017;40(5):293–319; doi: 10.1016/j.jmpt.2017.04.001.
 
29.
Hauger AV, Reiman MP, Bjordal JM, Sheets C, Ledbetter L, Goode AP. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc. 2018;26(2):399-410; doi: 10.1007/s00167-017-4669-5.
 
30.
Cameron MH. Physical Agents in Rehabilitation: From Research to Practice. Elsevier Health Sciences; 2012.
 
31.
Almagro Urrutia ZE, Santos Solano L, Rodriguez LL. Diadynamic and galvanic currents in the treatment of temporomandibular dysfunction [in Spanish]. Rev Cubana Estomatol. 1998;35(3):73–79.
 
32.
Grau LI, Santos Solana L, García J. Diadynamic currents and ultrasound in the treatment of temporomandibular dysfunctions. Rev Cubana Estomatol. 1998;35(3):80–85.
 
33.
Muragod A, Mathias O, Bhoir P. Effectiveness of transcutaneous electrical nerve stimulation and diadynamic current on primary dysmenorrhea: a randomized clinical trial. J Med Sci Clin Res. 2017;5(3):18557–18562; doi: 10.18535/jmscr/v5i3.48.
 
34.
Demidaś A, Zarzycki M. Touch and pain sensations in Diadynamic Current (DD) and Transcutaneous Electrical Nerve Stimulation (TENS): a randomized study. Biomed Res Int. 2019;2019:9073073; doi: 10.1155/2019/9073073.
 
35.
Sayilir S, Yildizgoren MT. The medium-term effects of diadynamic currents in chronic low back pain; TENS versus diadynamic currents: a randomised, follow-up study. Complement Ther Clin Pract. 2017;29:16–19; doi: 10.1016/j.ctcp.2017.07.002.
 
36.
Ratajczak B, Hawrylak A, Demidaś A, Kuciel-Lewandow­ska J, Boerner E. Effectiveness of diadynamic currents and transcutaneous electrical nerve stimulation in disc disease lumbar part of spine. J Back Musculoskelet Rehabil. 2011;24(3):155–159; doi: 10.3233/BMR-2011-0289.
 
37.
Can F, Tandogan R, Yilmaz I, Dolunay E, Erden Z. Rehabilitation of patellofemoral pain syndrome: TENS versus diadynamic current therapy for pain relief. Pain Clinic. 2003;15:61–68; doi: 10.1163/156856903321196519.
 
38.
Heggannavar A, Ramannavar P, Bhodaji S. Effectiveness of diadynamic current and mens in heel pain: a randomized clinical trial. Int J Physiother Res. 2015;3(2):992–998; doi: 10.16965/ijpr.2015.121.
 
39.
Völklein R, Callies R. Change in pain due to different current forms of diadynamic currents in gonarthrosis and lumbar syndrome. Phys Med Rehabil Kurortmed. 1990;42(2):113–118; doi: 10.1055/s-2008-1062210.
 
40.
Gomes CAFP, Dibai-Filho AV, Politti F, Gonzalez TO, Biasotto-Gonzalez DA. Combined use of diadynamic currents and manual therapy on myofascial trigger points in patients with shoulder impingement syndrome: a randomized controlled trial. J Manipulative Physiol Ther. 2018;41(6):475–482; doi: 10.1016/j.jmpt.2017.10.017.
 
41.
Dibai-Filho AV, de Oliveira AK, Girasol CE, Dias FR, Gui­rro RR. additional effect of static ultrasound and diadynamic currents on myofascial trigger points in a manual therapy program for patients with chronic neck pain: a randomized clinical trial. Am J Phys Med Rehabil. 2017;96(4):243–252; doi: 10.1097/PHM.0000000000000595.
 
42.
Ebadi S, Ansari NN, Ahadi T, Fallah E, Forogh B. No immediate analgesic effect of diadynamic current in patients with nonspecific low back pain in comparison to TENS. J Bodyw Mov Ther. 2018;22(3):693–699; doi: 10.1016/j.jbmt.2017.11.003.
 
43.
Camargo BF, Santos M, Liebano R. Hypoalgesic effect of Bernard’s diadynamic currents on healthy individuals. Revista Dor. 2012;13(4):327–331; doi: 10.1590/S1806-00132012000400004.
 
44.
Rodriguez MJM. Electrotherapy in Physiotherapy [in Spanish]. 2nd ed. Editorial Medica Panamericana; 2005:181–204.
 
45.
Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109–121; doi: 10.1054/jpai.2003.434.
 
46.
Liebano RE, Rakel B, Vance CGT, Walsh DM, Sluka KA. An investigation of the development of analgesic tolerance to TENS in humans. Pain. 2011;152(2):335–342; doi: 10.1016/j.pain.2010.10.040.
 
47.
Peng W, Tang ZY, Zhang FR, Li H. Kong YZ, Iannetti GD, Hu Li. Neurobiological mechanisms of TENS-induced analgesia. Neuroimage. 2019;195:396–408; doi: 10.1016/j.neuroimage.2019.03.077.
 
48.
Sims-Williams H, Matthews JC, Talbot PS, et al. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage. 2017;146:833–842; doi: 10.1016/j.neuroimage.2016.08.038.
 
49.
Ortiz H, Cancino J, Goluboff N, Obando G, Jara M, Ve­ra M. Effects of ascending and descending direct current on grip strength assessed through dynamometry and myofeedback: a randomized controlled trial. Physiother Quart. 2020;28(2):1–8; doi: 10.5114/pq.2020.92471.
 
50.
Zheng Y, Hu X. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency. J Neural Eng. 2018;15(4):046001; doi: 10.1088/1741-2552/aab90f.
 
51.
Almeida CC, Silva VZMD, Júnior GC, Liebano RE, Duri­gan JLQ. Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: a systematic review with meta-analysis. Braz J Phys Ther. 2018;22(5):347–354; doi: 10.1016/j.bjpt.2017.12.005.
 
52.
Rampazo da Silva ÉP, da Silva VR, Bernardes AS, Matuzawa FM, Liebano RE. Study protocol of hypoalgesic effects of low frequency and burst-modulated alternating currents on healthy individuals. Pain Manag. 2018;8(2):71–77; doi: 10.2217/pmt-2017-0058.
 
53.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535; doi: 10.1136/bmj.b2535.
 
54.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan – a web and mobile app for systematic reviews. Syst Rev. 2016;5:210; doi: 10.1186/s13643-016-0384-4.
 
55.
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–721.
 
56.
de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–133; doi: 10.1016/s0004-9514(09)70043-1.
 
57.
Albanese E, Bütikofer L, Armijo-Olivo S, Ha C, Egger M. Construct validity of the Physiotherapy Evidence Database (PEDro) quality scale for randomized trials: item response theory and factor analyses. Res Synth Methods. 2020;11(2):227–236; doi: 10.1002/jrsm.1385.
 
58.
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:4898; doi: 10.1136/bmj.l4898.
 
59.
Minozzi S, Cinquini M, Gianola S, Gonzalez-Lorenzo M, Banzi R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J Clin Epidemiol. 2020;126:37–44; doi: 10.1016/j.jclinepi.2020.06.015.
 
60.
Minozzi S, Cinquini M, Gianola S, Castellini G, Gerardi C, Banzi R. Risk of bias in nonrandomized studies of interventions showed low inter-rater reliability and challenges in its application. J Clin Epidemiol. 2019;112:28–35; doi: 10.1016/j.jclinepi.2019.04.001.
 
61.
Stovold E, Beecher D, Foxlee R, Noel-Storr A. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram. Syst Rev. 2014;3:54; doi: 10.1186/2046-4053-3-54.
 
62.
McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61; doi: 10.1002/jrsm.1411.
 
63.
Benjamin SJ, Flood JN, Bechtel R, Alon G. Measurement of soft tissue temperature and impedance following the application of transdermal direct current. Physiotherapy. 2007;93(2):114–120; doi: 10.1016/j.physio.2006.11.008.
 
64.
de la Barra Ortiz HA, Opazo J, Poblete IR, Santis JM. Effects of cathode and anode of the direct current on changes in palmar grip strength: assessment through a dynamometry. Fisioter Pesq. 2018;25(1):115–123; doi: 10.1590/1809-2950/17460125012018.
 
65.
Vance CG, Dailey DL, Rakel BA, Sluka KA. Using TENS for pain control: the state of the evidence. Pain Manag. 2014;4(3):197–209; doi: 10.2217/pmt.14.13.
 
66.
Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014;155(2):210–216; doi: 10.1016/j.pain.2013.12.010.
 
67.
Manca A, Limonta E, Pilurzi G, Ginatempo F, De Natale ER, Mercante B, et al. Ultrasound and laser as stand-alone therapies for myofascial trigger points: a randomized, double-blind, placebo-controlled study. Physiother Res Int. 2014;19(3):166–175; doi: 10.1002/pri.1580.
 
68.
Kavadar G, Çağlar N, Özen Ş, Tütün Ş, Demircioğlu D. Efficacy of conventional ultrasound therapy on myofascial pain syndrome: a placebo controlled study. Agri. 2015;27(4):190–196; doi: 10.5505/agri.2015.48569.
 
69.
Ita K. Perspectives on transdermal electroporation. Pharmaceutics. 2016;8(1):9; doi: 10.3390/pharmaceutics8010009.
 
70.
Morishita K, Karasuno H, Yokoi Y, Morozumi K, Ogihara H, Ito T, et al. Effects of therapeutic ultrasound on range of motion and stretch pain. J Phys Ther Sci. 2014;26(5):711–715; doi: 10.1589/jpts.26.711.
 
71.
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194; doi: 10.1001/jama.2013.281053.
 
72.
Chiarotto A, Maxwell LJ, Ostelo RW, Boers M, Tugwell P, Terwee CB. Measurement properties of visual analogue scale, numeric rating scale, and pain severity subscale of the brief pain inventory in patients with low back pain: a systematic review. J Pain. 2019;20(3):245–263; doi: 10.1016/j.jpain.2018.07.009.
 
73.
Heller GZ, Manuguerra M, Chow R. How to analyze the Visual Analogue Scale: myths, truths and clinical relevance. Scand J Pain. 2016;13:67–75; doi: 10.1016/j.sjpain.2016.06.012.
 
74.
Waller R, Straker L, O’Sullivan P, Sterling M, Smith A. Reliability of pressure pain threshold testing in healthy pain free young adults. Scand J Pain. 2015;9(1):38–41; doi: 10.1016/j.sjpain.2015.05.004.
 
75.
Koo TK, Guo JY, Brown CM. Test-retest reliability, repeatability, and sensitivity of an automated deformation-controlled indentation on pressure pain threshold measurement. J Manipulative Physiol Ther. 2013;36(2):84–90; doi: 10.1016/j.jmpt.2013.01.001.
 
76.
Alghadir AH, Anwer S, Iqbal A, Iqbal ZA. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res. 2018;11:851–856; doi: 10.2147/JPR.S158847.
 
77.
Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011;63(Suppl 11):240–252; doi: 10.1002/acr.20543.
 
78.
Dworkin RH, Turk DC, Revicki DA, Harding G, Coyne KS, Peirce-Sandner S, et al. Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain. 2009;144(1–2):35–42; doi: 10.1016/j.pain.2009.02.007.
 
79.
Roland M, Fairbank J. The Roland-Morris Disability Questionnaire and the Oswestry Disability Questionnaire [published correction appears in Spine 2001;26(7):847]. Spine. 2000;25(24):3115–3124; doi: 10.1097/00007632-200012150-00006.
 
80.
Vianin M. Psychometric properties and clinical usefulness of the Oswestry Disability Index. J Chiropr Med. 2008;7(4):161–163; doi: 10.1016/j.jcm.2008.07.001.
 
81.
Dawson J, Linsell L, Doll H, Zondervan K, Rose P, Carr A, et al. Assessment of the Lequesne index of severity for osteoarthritis of the hip in an elderly population. Osteoarthritis Cartilage. 2005;13(10):854–860; doi: 10.1016/j.joca.2005.05.006.
 
82.
Nilsdotter A, Bremander A. Measures of hip function and symptoms: Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), Lequesne Index of Severity for Osteoarthritis of the Hip (LISOH), and American Academy of Orthopedic Surgeons (AAOS) Hip and Knee Questionnaire. Arthritis Care Res. 2011;63(Suppl 11):200–207; doi: 10.1002/acr.20549.
 
83.
Kocher MS, Steadman JR, Briggs KK, Sterett WI, Haw­kins RJ. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J Bone Joint Surg Am. 2004;86(6):1139–1145; doi: 10.2106/00004623-200406000-00004.
 
84.
Roy JS, MacDermid JC, Woodhouse LJ. Measuring shoulder function: a systematic review of four questionnaires. Arthritis Rheum. 2009;61(5):623–632; doi: 10.1002/art.24396.
 
85.
Membrilla-Mesa MD, Cuesta-Vargas AI, Pozuelo-Calvo R, Tejero-Fernández V, Martín-Martín L, Arroyo-Morales M. Shoulder pain and disability index: cross cultural validation and evaluation of psychometric properties of the Spanish version. Health Qual Life Outcomes. 2015;13:200; doi: 10.1186/s12955-015-0397-z.
 
86.
MacDermid JC, Walton DM, Avery S, Blanchard A, Et­ruw E, McAlpine C, et al. Measurement properties of the neck disability index: a systematic review. J Orthop Sports Phys Ther. 2009;39(5):400–417; doi: 10.2519/jospt.2009.2930.
 
87.
Uthaikhup S, Paungmali A, Pirunsan U. Validation of Thai versions of the Neck Disability Index and Neck Pain and Disability Scale in patients with neck pain. Spine. 2011;36(21):1415–1421; doi: 10.1097/BRS.0b013e31820e68ac.
 
88.
Hale SA, Hertel J. Reliability and sensitivity of the foot and ankle disability index in subjects with chronic ankle instability. J Athl Train. 2005;40(1):35–40.
 
89.
Zale EL, Lange KL, Fields SA, Ditre JW. The relation between pain-related fear and disability: a meta-analysis. J Pain. 2013;14(10):1019–1030; doi: 10.1016/j.jpain.2013.05.005.
 
90.
Kroska EB. A meta-analysis of fear-avoidance and pain intensity: the paradox of chronic pain. Scand J Pain. 2016;13:43–58; doi: 10.1016/j.sjpain.2016.06.011.
 
91.
Hebb ALO, Poulin J-F, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1225–1238; doi: 10.1016/j.pnpbp.2005.08.008.
 
92.
Fenton BW, Shih E, Zolton J. The neurobiology of pain perception in normal and persistent pain. Pain Manag. 2015;5(4):297–317; doi: 10.2217/pmt.15.27.
 
93.
Markum RA. Assessment of the reliability of and the effect of neutral instructions on the symptom ratings on the Moos Menstrual Distress Questionnaire. Psychosom Med. 1976;38(3):163–172; doi: 10.1097/00006842-197605000-00002.
 
94.
Igwea SE, Tabansi-Ochuogu CS, Abaraogu UO. TENS and heat therapy for pain relief and quality of life improvement in individuals with primary dysmenorrhea: a systematic review. Complement Ther Clin Pract. 2016;24:86–91; doi: 10.1016/j.ctcp.2016.05.001.
 
95.
Rezvani A, Ergin O, Karacan I, Oncu M. Validity and reliability of the metric measurements in the assessment of lumbar spine motion in patients with ankylosing spondylitis. Spine. 2012;37(19):1189–1196; doi: 10.1097/BRS.0b013e31825ef954.
 
eISSN:2544-4395
Journals System - logo
Scroll to top