ORIGINAL PAPER
Cardiac autonomic recovery following reduced exertion high-intensity interval training (REHIT) in physically inactive adults
 
More details
Hide details
1
Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
 
 
Submission date: 2024-05-31
 
 
Acceptance date: 2024-09-05
 
 
Online publication date: 2025-07-24
 
 
Corresponding author
Preeyaphorn Songsorn   

Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University 99 Moo 18 Paholyothin Road, Khlong Nueng, Khlong Luang District, Pathum Thani 12121, Thailand
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Post-exercise heart rate variability (HRV) recovery is associated with cardiac parasympathetic reactivation, reflecting cardiovascular homeostasis restoration. This study aimed to compare cardiac autonomic recovery following reduced-exertion high-intensity interval training (REHIT) and moderate-intensity continuous training (MICT) in sedentary individuals.

Methods:
Sixteen physically inactive male volunteers [aged 21 ± 0.89 years; body mass index = 20.09 ± 1.09 kg/m2; maximal oxygen consumption (VO2 max) = 30.90 ± 4.76 ml/kg/min] were included in a randomised crossover study. Blood pressure, heart rate, rating of perceived exertion (RPE), and HRV were measured before, immediately after, and at 20 min, 40 min, 60 min, and 24 h after REHIT and MICT.

Results:
Both exercise protocols resulted in a significant decrease in log-transformed (Ln) RMSSD and LnSDNN immediately post-exercise (p < 0.05). Following REHIT, LnSDNN and LnRMSSD returned to baseline within 24 h. low-frequency activity (LnLF) and high-frequency activity (LnHF) decreased significantly immediately, 20 min and 40 min after REHIT (p < 0.05). After MICT, LnSDNN and LnRMSSD returned to baseline within 20 and 40 min, respectively. Moreover, LnLF and LnHF returned to baseline within 60 and 20 min, respectively, following MICT.

Conclusions:
These findings indicate that REHIT prolongs HRV recovery. However, HRV returned to baseline within 24 h, providing valuable insights for exercise prescription utilising the REHIT protocol.
REFERENCES (35)
1.
Prinsloo GE, Rauch HG, Derman WE. A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. Phys Sportsmed. 2014;42(2):88–99; doi: 10.3810/psm.2014.05.2061.
 
2.
Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, Ruberto M, Biondi A, Cascio O, Bertozzi G, Pisa­nelli D, Maglietta F, Messina A, Mollica MP, Salerno M. Heart rate variability as predictive factor for sudden cardiac death. Aging. 2018;10(2):166–77; doi: 10.18632/aging.101386.
 
3.
Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293(1):H133–41; doi: 10.1152/ajpheart.00062.200.
 
4.
Cabral-Santos C, Giacon TR, Campos EZ, Gerosa-Neto J, Rodrigues B, Vanderlei LC, Lira FS. Impact of high-intensity intermittent and moderate-intensity continuous exercise on autonomic modulation in young men. Int J Sports Med. 2016;37(6):431–5; doi: 10.1055/s-0042-.
 
5.
Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77; doi: 10.1007/s40279-013-0083-4.
 
6.
Lahiri MK, Chicos A, Bergner D, Ng J, Banthia S, Wang NC, Subačius H, Kadish AH, Goldberger JJ. Recovery of heart rate variability and ventricular repolarization indices following exercise. Ann Noninvasive Electrocardiol. 2012;17(4):349–60; doi: 10.1111/j.1542-474X.2012.00.x.
 
7.
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258; doi: 10.3389/fpubh.2017.00258.
 
8.
Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889–919; doi: 10.2165/00007256-200333120-00003.
 
9.
Schaun GZ, Del Vecchio FB. High-intensity interval exercises’ acute impact on heart rate variability: comparison between whole-body and cycle ergometer protocols. J Strength Cond Res. 2018;32(1):223–9; doi: 10.1519/JSC.0000000000002180.
 
10.
Michael S, Graham KS, Davis GM. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals – a review. Front Physiol. 2017;8:301; doi: 10.3389/fphys.2017.00301.
 
11.
Vollaard NBJ, Metcalfe RS. Research into the health benefits of sprint interval training should focus on protocols with fewer and shorter sprints. Sports Med. 2017;47(12):2443–51; doi: 10.1007/s40279-017-0727-x.
 
12.
Cuddy TF, Ramos JS, Dalleck LC. Reduced exertion high-intensity interval training is more effective at improving cardiorespiratory fitness and cardiometabolic health than traditional moderate-intensity continuous training. Int J Environ Res Public Health. 2019;16(3):483; doi: 10.3390/ijerph16030483.
 
13.
Metcalfe RS, Atef H, Mackintosh K, McNarry M, Ryde G, Hill DM, Vollaard NBJ. Time-efficient and computer-guided sprint interval exercise training for improving health in the workplace: a randomised mixed-methods feasibility study in office-based employees. BMC Public Health. 2020;20(1):313; doi: 10.1186/s12889-020-8444-z.
 
14.
Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2012;112(7):2767–75; doi: 10.1007/s00421-011-2254-z.
 
15.
Ruffino JS, Songsorn P, Haggett M, Edmonds D, Robinson AM, Thompson D, Vollaard NBJ. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl Physiol Nutr Metab. 2017;42(2):202–8; doi: 10.1139/apnm-2016-0497.
 
16.
Franklin BA, Thompson PD, Al-Zaiti SS, Albert CM, Hivert M-F, Levine BD, Lobelo F, Madan K, Sharrief AZ, Eijsvogels TMH; American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council. Exercise-Related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: placing the risks into perspective – an update: a scientific statement from the american heart association. Circulation. 2020;141(13):e705–36; doi: 10.1161/CIR.0000000000000749.
 
17.
Rattanawiwatpong P, Khunphasee A, Pongurgsorn C, Intarakamhang P. Validity and reliability of the Thai version of Short Format International Physical Activity Questionnaire (IPAQ) [in Thai]. J Thai Rehabil Med. 2006;16(3):147–60.
 
18.
Physical Activity Readiness Questionnare Plus 2019-PAR-Q+ (Thai). 2019. Available from: http://doh.hpc.go.th/bs/issueD... (accessed 01.06.2020).
 
19.
American College of Sports Medicine, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s Guidelines for Exercise Testing and Prescription: Wolters Kluwer; 2018.
 
20.
Jinakote M, Pongpanit K. Correlations between change in neural respiratory drive and heart rate variability in patients submitted to open-heart surgery. J Exerc Rehabil. 2019;15(4):616–21; doi: 10.12965/jer.1938230.115.
 
21.
Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016;116(3):563–71; doi: 10.1007/s00421-015-3303-9.
 
22.
Ye Y, Tong TK, Kong Z, Tao ED, Ying X, Nie J. Cardiac autonomic disturbance following sprint-interval exercise in untrained young males: does exercise volume matter? J Exerc Sci Fit. 2022;20(1):32–9; doi: 10.1016/j.jesf.2021.10.002.
 
23.
Michael S, Jay O, Graham KS, Davis GM. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Appl Physiol Nutr Metab. 2017;42(8):834–40; doi: 10.1139/apnm-2017-0049.
 
24.
Niewiadomski W, Gąsiorowska A, Krauss B, Mróz A, Cybulski G. Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imaging. 2007;27(5):309–19; doi: 10.1111/j.1475-097X.2007.00753.x.
 
25.
White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol. 2014;592(12):2491–500; doi: 10.1113/jphysiol.2014.271858.
 
26.
Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–73; doi: 10.1249/mss.0b013e318060f17d.
 
27.
Michael S, Jay O, Graham KS, Davis GM. Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery. J Sci Med Sport. 2018;21(10):1079–84; doi: 10.1016/j.jsams.2018.01.015.
 
28.
Kaikkonen P, Hynynen E, Mann T, Rusko H, Nummela A. Can HRV be used to evaluate training load in constant load exercises? Eur J Appl Physiol. 2010;108(3):435–42; doi: 10.1007/s00421-009-1240-1.
 
29.
Cunha FA, Midgley AW, Gonçalves T, Soares PP, Farinatti P. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. Springerplus. 2015;4:100; doi: 10.1186/s40064-015-0882-1.
 
30.
Al Haddad H, Mendez-Villanueva A, Bourdon PC, Buch­heit M. Effect of acute hypoxia on post-exercise parasympathetic reactivation in healthy men. Front Physiol. 2012;3:289; doi: 10.3389/fphys.2012.00289.
 
31.
Buchheit M, Al Haddad H, Mendez-Villanueva A, Quod MJ, Bourdon PC. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol. 2011;2:69, doi: 10.3389/fphys.2011.00069.
 
32.
Buchheit M, Duché P, Laursen PB, Ratel S. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142–50; doi: 10.1139/H09-140.
 
33.
Buchheit M, Laursen PB, Al Haddad H, Ahmaidi S. Exercise-induced plasma volume expansion and post-exercise parasympathetic reactivation. Eur J Appl Physiol. 2009;105(3):471–81; doi: 10.1007/s00421-008-0925-1.
 
34.
Convertino VA. Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise. Med Sci Sports Exerc. 2003;35(6):970–7; doi: 10.1249/01.MSS.0000069753.92706.DD.
 
35.
Scherr J, Wolfarth B, Christle JW, Pressler A, Wagen­pfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113(1):147–55; doi: 10.1007/s00421-012-2421-x.
 
eISSN:2544-4395
Journals System - logo
Scroll to top