ORIGINAL PAPER
Correlation between lumbopelvic stability and hamstring strain recurrence in sprinters
 
More details
Hide details
1
Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
 
2
Jamia Hamdard University, Hamdard Nagar, New Delhi, India
 
3
Jawaharlal Nehru Stadium, Pragati Vihar, New Delhi, India
 
 
Submission date: 2020-08-28
 
 
Acceptance date: 2021-07-23
 
 
Publication date: 2023-04-12
 
 
Physiother Quart. 2023;31(3):80-85
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
To examine the correlation of lumbopelvic stability with hamstring strain recurrence and determine how various lumbopelvic stability related factors are associated with recurrent hamstring strain in sprinters.

Methods:
A retrospective case-control study with a sample of nineteen participants including seven healthy sprinters and twelve sprinters with strained hamstring (mean age: 19.42 ± 2.29 and 18.58 ± 1.62 years, respectively) were examined to assess the effect of altered lumbopelvic stability using factors such as hip flexor length, sacral mobility, internal rotation range, hamstring length and neuromuscular control of spine.

Results:
Results revealed no significant correlation of neuromuscular control of spine with right (r = 0.28, p = 0.35) and left (r = 0.09, p = 0.71) side hamstring strain recurrence. A significant positive correlation was observed between: right side hamstring length and right-side internal rotation range (r = 0.65, p = 0.001), right side hamstring length and left side internal rotation range (r = 0.81, p = 0.001), left side hamstring length and right-side internal rotation range (r = 0.67, p = 0.001), left side hamstring length and left side internal rotation range (r = 0.82, p = 0.001). The neuromuscular control of spine was not significantly correlated with lumbopelvic stability related factors. Also, no significant difference in sacral mobility between the groups was found.

Conclusions:
The hip flexor length, internal rotation range and hamstring length can be considered as useful factors in order to assess the risk of injury of hamstring muscle in sprinters.

 
REFERENCES (37)
1.
Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67–81; doi: 10.2519/jospt.2010.3047.
 
2.
Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–85; doi: 10.1136/bjsm.2010.081695.
 
3.
Verrall GM, Slavotinek JP, Barnes PG, Fon GT, Esterman A. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury. J Orthop Sports Phys Ther. 2006;36(4):215–224; doi: 10.2519/jospt.2006.36.4.215.
 
4.
Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A, et al. The Football Association Medical Research Programme: an audit of injuries in professional football – analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41; doi: 10.1136/bjsm.2002.002352.
 
5.
Malliaropoulos N, Papalexandris S, Papalada A, Papacostas E. The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Med Sci Sports Exerc. 2004;36(5):756–759; doi: 10.1249/01.mss.0000126393.20025.5e.
 
6.
Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90; doi: 10.1136/bjsports-2011-090176.
 
7.
Heiser TM, Weber J, Sullivan G, Clare P, Jacobs RR. Prophylaxis and management of hamstring muscle injuries in intercollegiate football players. Am J Sports Med. 1984;12(5):368–370; doi: 10.1177/036354658401200506.
 
8.
Opar DA, Williams MD, Shield AJ. Hamstring strain injuries. Sports Med. 2012;42(3):209–226; doi: 10.2165/11594800-000000000-00000.
 
9.
Geier D. That’s Gotta Hurt: The Injuries That Changed Sports Forever. Chicago: University Press of New England; 2017.
 
10.
Mills M, Frank B, Goto S, Blackburn T, Cates S, Clark M, et al. Effect of restricted hip flexor muscle length on hip extensor muscle activity and lower extremity biomechanics in college-aged female soccer players. Int J Sports Phys Ther. 2015;10(7):946–954.
 
11.
Vogt L, Pfeifer K, Portscher M, Banzer W. Lumbar corsets: their effect on three-dimensional kinematics of the pelvis. J Rehabil Res Dev. 2000;37(5):495–499.
 
12.
Schuermans J, Van Tiggelen D, Palmans T, Danneels L, Witvrouw E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: cause or consequence? Gait Posture. 2017;57:270–277; doi: 10.1016/j.gaitpost.2017.06.268.
 
13.
Riley PO, Franz J, Dicharry J, Kerrigan DC. Changes in hip joint muscle–tendon lengths with mode of locomotion. Gait Posture. 2010;31(2):279–283; doi: 10.1016/j.gaitpost.2009.11.005.
 
14.
Pinniger GJ, Steele JR, Groeller H. Does fatigue induced by repeated dynamic efforts affect hamstring muscle function? Med Sci Sports Exerc. 2000;32(3):647–653; doi: 10.1097/00005768-200003000-00015.
 
15.
Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–142; doi: 10.1093/ptj/77.2.132.
 
16.
Panayi S. The need for lumbar-pelvic assessment in the resolution of chronic hamstring strain. J Bodyw Mov Ther. 2010;14(3):294–298; doi: 10.1016/j.jbmt.2009.08.004.
 
17.
Gnat R, Kuszewski M, Koczar R, Dziewońska A. Reliability of the passive knee flexion and extension tests in healthy subjects. J Manipulative Physiol Ther. 2010;33(9):659–665; doi: 10.1016/j.jmpt.2010.09.001.
 
18.
Azevedo DC, Lauria AC, Pereira ARS, Andrade GT, Ferreira ML, Ferreira PH, et al. Intraexaminer and interexaminer reliability of pressure biofeedback unit for assessing lumbopelvic stability during 6 lower limb movement tests. J Manipulative Physiol Ther. 2013;36(1):33–43; doi: 10.1016/j.jmpt.2012.12.008.
 
19.
Richardson C, Jull G, Toppenberg R, Comerford M. Techniques for active lumbar stabilisation for spinal protection: a pilot study. Aust J Physiother. 1992;38(2):105–112; doi: 10.1016/S0004-9514(14)60555-9.
 
20.
Kim G-M, Ha S-M. Reliability of the modified Thomas test using a lumbo-plevic stabilization. J Phys Ther Sci. 2015;27(2):447–449; doi: 10.1589/jpts.27.447.
 
21.
Kouyoumdjian P, Coulomb R, Sanchez T, Asencio G. Clinical evaluation of hip joint rotation range of motion in adults. Orthop Traumatol Surg Res. 2012;98(1):17–23; doi: 10.1016/j.otsr.2011.08.015.
 
22.
Patel N, Gross A, Brown L, Gekht G. A randomized, placebo-controlled study to assess the efficacy of lateral branch neurotomy for chronic sacroiliac joint pain. Pain Med. 2012;13(3):383–398; doi: 10.1111/j.1526-4637.2012.01328.x.
 
23.
Schuermans J, Danneels L, Van Tiggelen D, Palmans T, Witvrouw E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: a prospective study with electromyography time-series analysis during maximal sprinting. Am J Sports Med. 2017;45(6):1315–1325; doi: 10.1177/0363546516687750.
 
24.
Liu Y, Sun Y, Zhu W, Yu J. The late swing and early stance of sprinting are most hazardous for hamstring injuries. J Sport Health Sci. 2017;6(2):133–136; doi: 10.1016/j.jshs.2017.01.011.
 
25.
Chance-Larsen K, Littlewood C, Garth A. Prone hip extension with lower abdominal hollowing improves the relative timing of gluteus maximus activation in relation to biceps femoris. Man Ther. 2010;15(1):61–65; doi: 10.1016/j.math.2009.07.001.
 
26.
Daly C, McCarthy Persson U, Twycross-Lewis R, Wole­dge RC, Morrissey D. The biomechanics of running in athletes with previous hamstring injury: a case-control study. Scand J Med Sci Sports. 2016;26(4):413–420; doi: 10.1111/sms.12464.
 
27.
Kuitunen S, Avela J, Kyröläinen H, Nicol C, Komi PV. Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol. 2002;88(1–2):107–116; doi: 10.1007/s00421-002-0669-2.
 
28.
Butterfield TA, Herzog W. Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles. J Appl Physiol. 2005;99(2):593–602; doi: 10.1152/japplphysiol.01128.2004.
 
29.
Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–530; doi: 10.1016/j.jelekin.2012.12.006.
 
30.
Schache AG, Blanch P, Rath D, Wrigley T, Bennell K. Three-dimensional angular kinematics of the lumbar spine and pelvis during running. Hum Mov Sci. 2002;21(2):273–293; doi: 10.1016/s0167-9457(02)00080-5.
 
31.
Cibulka MT, Rose SJ, Delitto A, Sinacore DR. Hamstring muscle strain treated by mobilizing the sacroiliac joint. Phys Ther. 1986;66(8):1220–1223; doi: 10.1093/ptj/66.8.1220.
 
32.
Freckleton G, Cook J, Pizzari T. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. Br J Sports Med. 2014;48(8):713–717; doi: 10.1136/bjsports-2013-092356.
 
33.
Vleeming A, Van Wingerden JP, Snijders CJ, Stoeckart R, Stijnen T. Load application to the sacrotuberous ligament; influences on sacroiliac joint mechanics. Clin Biomech. 1989;4(4):204–209; doi: 10.1016/0268-0033(89)90003-X.
 
34.
Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125–141; doi: 10.1159/000085004.
 
35.
Mason MF, Norton MI, Van Horn JD, Wegner DM, Graf­ton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science. 2007;315(5810):393–395; doi: 10.1126/science.1131295.
 
36.
Hoskins W, Pollard H. The management of hamstring injury – Part 1: Issues in diagnosis. Man Ther. 2005;10(2):96–107; doi: 10.1016/j.math.2005.03.006.
 
37.
Kozina Z, Chaika O, Prokopenko I, Zdanyuk V, Kniaz H, Proskurnia O, et al. Change in the bio-mechanical characteristics of running as a result of an individual 1-year program for training an elite athlete with visual impairment for Paralympic Games. Physiother Quart. 2020;28(3):21–31; doi: 10.5114/pq.2020.95771.
 
eISSN:2544-4395
Journals System - logo
Scroll to top