ORIGINAL PAPER
Effect of interval training and electromagnetic field therapy on functional balance and peripheral arterial disease severity in patients with diabetic polyneuropathy: randomised controlled trial
 
More details
Hide details
1
Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Faculty of Physical Therapy, Cairo University, Egypt
 
2
Department of Physical Therapy, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
 
 
Submission date: 2022-09-22
 
 
Acceptance date: 2023-03-01
 
 
Publication date: 2024-06-21
 
 
Corresponding author
Ashraf Abdelaal Mohamed Abdelaal   

Department of Physical Therapy, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Postal Code: 715
 
 
Physiother Quart. 2024;32(2):68-75
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
To evaluate the cross-over association of moderate-to-high-intensity interval-training (M-HIIT) and low-frequency pulsed-electromagnetic field therapy (LFPMT) on functional balance (FB) and ankle-brachial index (ABI) in patients with diabetic polyneuropathy (DPN).

Methods:
Twenty-four participants with DPN, age 40–65 years, 0.6 < ABI ≤ 0.9, were randomly allocated into group A (n = 7) and received M-HIIT followed by LFPMT, group B (n = 9) and received LFPMT followed by M-HIIT, or group C (n = 8) as the control group. Each of the LFPMT (15 Hz, 20 G, for 24 min) and the M-HIIT was provided twice weekly, for 4 weeks. Variables were evaluated pre and after 4 and 8 weeks.

Results:
After 4 weeks, the FB significantly increased [by 9.08% (p = 0.00) and by 6.82% (p = 0.00)] and the ABI significantly increased [by 7.84% (p = 0.01) and 12.57% (p = 0.03)], while after 8 weeks, the FB significantly increased [by 13.03% (p = 0.00) and 11.26% (p = 00)] and the ABI significantly increased [by 10.05% (p = 0.01) and 13.01% (p = 0.01)] in groups A and B, respectively. Significant differences existed between-groups after 4 weeks in the [FB (p = 0.00) and ABI (p = 0.02)], and after 8 weeks [FB (p = 0.00) and ABI (p = 0.01)]. Post-hoc comparisons revealed the FB most significantly increased (p = 0.001) in group A, while the ABI more significantly increased (p = 0.02) in group B.

Conclusions:
Combined M-HIIT and LFPMT programs were effective in improving FB and ABI. Furthermore, starting the rehabilitation regimen with M-HIIT followed by LFPMT had a superior effect in improving the FB while starting the program with LFPMT followed by M-HIIT was more effective in improving the ABI in patients with DPN.

 
REFERENCES (43)
1.
World Health Organization. Classification of diabetes mellitus. Geneva: WHO; 2019: pp. 5–6. Available 20.09.2022 from: https://apps.who.int/iris/hand....
 
2.
Akbar DH, Mira AS, Zawawi TH, Malibary HM. Subclinical diabetic neuropathy: a common complication in Saudi diabetics. Saudi Med J. 2000;21(5):433–7.
 
3.
D’Silva LJ, Lin J, Staecker H, Whitney SL, Kluding PM. Impact of diabetic complications on balance and falls. Phys Ther. 2016;96(3):400–9; doi: 10.2522/ptj.20140604.
 
4.
Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 2000;86(3):309–12; doi: 10.1016/s0002-9149(00)00920-6.
 
5.
Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108(25):3097–3101.
 
6.
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3(1):1–58; doi: 10.1002/cphy.c110062.
 
7.
Sigal RJ, Armstrong MJ, Bacon SL, Boule NG, Dasgupta K, Kenny GP, Riddell MC. Physical activity and diabetes. Can J Diabetes. 2018;42(1):54–63; doi: 10.1016/j.jcjd.2017.10.008.
 
8.
Graak V, Chaudhary S, Bal1 BS, Sandhu JS. Evaluation of the efficacy of pulsed electromagnetic field in the management of patients with diabetic polyneuropathy. Int J Diab Dev Ctries. 2009;29(2):56–61; doi: 10.4103/0973-3930.53121.
 
9.
Musaev AV, Guseinova SG, Imamverdieva SS. The use of pulsed electromagnetic fields with complex modulation in the treatment of patients with Diabetic polyneuropathy. Neurosci Behav Physiol 2003;33(8):745–52; doi: 10.1023/a:1025184912494.
 
10.
American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46; doi: 10.2337/dc12-2625.
 
11.
Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement Denis L, Coca A, de Simone G, Do­miniczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti Al, Kerins M, Kjeldsen SE, Kreutz Rd, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(33):3021–4; doi: 10.1093/eurheartj/ehy339.
 
12.
Kahkha HM, Moazami M, Rezaeian N. The comparison of effect of high intensity interval training compared to aerobic training on serum levels of some of stress activated protein kinases and glucose in type ii diabetic men with peripheral neuropathy. J Critical Rev. 2020;7(08):3548– 56.
 
13.
Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–156; doi: 10.1016/s0735-1097(00)01054-8.
 
14.
Berg, KO, Wood-Dauphinee SL, Williams JI, Maki BE. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992;83(Suppl 2):7–11.
 
15.
Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FGR, Hiatt WR, Jönsson B, Lacroix P, Marin B, McDermott MM, Norgren L, Pande RL, Preux P-M, Jelle Stoffers HE, Treat-Jacobson D; American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–2909; doi: 10.1161/CIR.0b013e318276fbcb [published correction in Circulation. 2013;127(1):e264].
 
16.
Abdelaal A, Abdelgalil A. Effects of pulsed electromagnetic therapy on functional capacity and fall risk in patient with diabetic polyneuropathy. Int J Ther Rehabil Res. 2015;4(4):95–103; doi:10.5455/ijtrr.00000071.
 
17.
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(1):5–20; doi: 10.2337/diacare.26.2007.s5.
 
18.
Bonnet CT, Carello C, Turvey MT. Diabetes and postural stability: review and hypotheses. J Mot Behav. 2009;41(2):172–190; doi: 10.3200/JMBR.41.2.172-192.
 
19.
Barone Gibbs B, Dobrosielski DA, Althouse AD, Stewart KJ. The effect of exercise training on ankle-brachial index in type 2 diabetes. Atherosclerosis. 2013;230(1):125–30; doi: 10.1016/j.atherosclerosis.2013.07.002.
 
20.
Pop-Busui R, Boulton A J, Feldman E L, Bril V, Freeman R, Malik R A, Sosenko J M, Ziegler D. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54; doi: 10.2337/dc16-2042.
 
21.
Sandri M, Adams V, Gielen S, Linke A, Lenk K, Kränkel N, Lenz D, Erbs S, Scheinert D, Mohr FW, Schuler G, Hambrecht R. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes. Circulation. 2005;111(25):3391–9; doi: 10.1161/CIRCULATIONAHA.104.527135.
 
22.
Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(1):65–7; doi: 10.1016/j.jvs.2006.12.037.
 
23.
Slørdahl SA, Wang E, Hoff J, Kemi OJ, Amundsen BH, Helgerud J. Effective training for patients with intermittent claudication. Scand Cardiovasc J. 2005;39(4):244–9; doi: 10.1080/14017430510035844.
 
24.
Tisi PV, Hulse M, Chulakadabba A, Gosling P, Shearman CP. Exercise training for intermittent claudication: does it adversely affect biochemical markers of the exercise-induced inflammatory response. Euro J Vasc Endovasc Surg. 1997;14(5):344–50; doi: 10.1016/s1078-5884(97)80283-3.
 
25.
Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, Goldberg AP. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49(6):755–62; doi: 10.1046/j.1532-5415.2001.49152.x.
 
26.
Wormgoor SG, Dalleck LC, Zinn C, Harris NK. Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes. 2017;41(5):536–47; doi: 10.1016/j.jcjd.2016.12.004.
 
27.
Devlin JT, Hirshman M, Horton ED, Horton ES. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes. 1987;36(4):434–9; doi: 10.2337/diab.36.4.434.
 
28.
Rogers MA, Yamamoto C, King DS, Hagberg JM, Ehsani AA, Holloszy JO. Improvement in glucose tolerance after 1 wk of exercise in patients with mild NIDDM. Diabetes Care. 1988;11(8):613–18; doi: 10.2337/diacare.11.8.613.
 
29.
Arciero PJ, Vukovich MD, Holloszy JO, Racette SB, Kohrt WM. Comparison of short-term diet and exercise on insulin action in individuals with abnormal glucose tolerance. J Appl Physiol. 1999;86(6):1930–5; doi: 10.1152/jappl.1999.86.6.1930.
 
30.
Quittan M, Schuhfried O, Wiesinger GF, Fialka-Moser V. Clinical effectiveness of magnetic field therapy: a review of the literature. Acta Med Austriaca. 2000;27(3):61–8; doi: 10.1046/j.1563-2571.2000.270210.x.
 
31.
Stewart GM, Wheatley-Guy CM, Johnson BD, Shen WK, Kim C-H. Impact of pulsed electromagnetic field therapy on vascular function and blood pressure in hypertensive individuals. J Clin Hypertens. 2020;22(6):1083–9; doi: 10.1111/jch.13877.
 
32.
Smith TL, Wong-Gibbons D, Maultsby J. Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res. 2004;22(1):80–4; doi: 10.1016/S0736-0266(03)00157-8.
 
33.
Bassett CA. Beneficial effects of electromagnetic fields. J Cell Biochem. 1993;51(4):387–93; doi: 10.1002/jcb.2400510402.
 
34.
Gmitrov J. Static magnetic field versus systemic calcium channel blockade effect on microcirculation: possible mechanisms and clinical implementation. Bioelectromagnetics. 2020;41(6):447–57; doi: 10.1002/bem.22272.
 
35.
Tallis AJ, Jacoby R, Muhlenfeld J, Smith APS. A randomized, sham-controlled, double-blind pilot study of pulsed electromagnetic field therapy to evaluate small fiber nerve growth and function and skin perfusion in subjects with painful peripheral diabetic neuropathy. J Diabetic Complications Med. 2017;2(2):117–22; doi: 10.4172/2475-3211.1000117.
 
36.
Rikk J, Finn KJ, Liziczai I, Radák Z, Bori Z, Ihász F. Influence of pulsing electromagnetic field therapy on resting blood pressure in aging adults. Electromagn Biol Med. 2013;32(2):165–72; doi: 10.3109/15368378.2013.776420.
 
37.
Tasset, I, Medina FJ, Jimena I, Aguera E, Gascon, F, Fei­jóo M, Sánchez-López F, Luque E, Peña J, Drucker-Co­lín R, Túnez I. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience. 2012;209:54-63; doi: 10.1016/j.neuroscience.2012.02.034.
 
38.
Stewart GM, Wheatley-Guy CM, Johnson BD, Shen WK, Kim CH. Impact of pulsed electromagnetic field therapy on vascular function and blood pressure in hypertensive individuals. J Clin Hypertens. 2020;22(6):1083–9; doi: 10.1111/jch.13877.
 
39.
Filimban WA, El-Fiky AA, Helal OF, Abdelaal AA. Effect of magnetic therapy on balance deficits in patients with diabetic polyneuropathy: randomized controlled trial. Jokull J. 2015;65(3):187–96.
 
40.
Bosi E, Bax G, Scionti L, Spallone V, Tesfaye S, Valensi P, Ziegler D; FREMS European Trial Study Group. Frequency-modulated electromagnetic neural stimulation (FREMS) as a treatment for symptomatic diabetic neuropathy: results from a double-blind, randomised, multicentre, long-term, placebo-controlled clinical trial. Diabetologia. 2013;56(3):467–75; doi: 10.1007/s00125-012-2795-7.
 
41.
Weintraub M, Herrmann D, Smith A, Backonja MM, Cole SP. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(7):1102–9; doi: 10.1016/j.apmr.2009.01.019.
 
42.
Wróbel M, Szymborska-Kajanek A, Wystrychowski G, Biniszkiewcz T, Sierón-Stollny K, Sieroń A, Pierzchała K, Grzeszczak W, Strojek K. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 2008;34(4 Pt 1):349–54; doi: 10.1016/j.diabet.2008.02.003.
 
43.
Stein C, Eibel B, Sbruzzi G, Lago PD, Plentz RD. Electrical stimulation and electromagnetic field use in patients with diabetic neuropathy: systematic review and meta-analysis. Braz J Phys Ther. 2013;17(2):93–104; doi: 10.1590/S1413-35552012005000083.
 
eISSN:2544-4395
Journals System - logo
Scroll to top