ORIGINAL PAPER
Effects of electromagnetic therapy on proprioception in a rodent animal model of rheumatoid arthritis
 
More details
Hide details
1
Faculty of Physical Therapy, Cairo University, Cairo, Egypt
 
2
Faculty of Science, Cairo University, Cairo, Egypt
 
3
Pathology Department, National Research Center, Ministry of Scientific Research, Cairo, Egypt
 
 
Submission date: 2022-08-13
 
 
Acceptance date: 2022-11-03
 
 
Publication date: 2024-03-25
 
 
Corresponding author
Mahmoud Nabhan   

Faculty of Physical Therapy, Cairo University, 7th Ahmed El-Zyat st., Cairo, Egypt
 
 
Physiother Quart. 2024;32(1):84-92
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
This study aimed primarily to investigate the effect of a PEMF on proprioception in terms of mechanoreceptor number and function and secondarily to assess the gait quality (sciatic function index) and arthritis severity (paw volume and body weight) in adjuvant-induced arthritis (AIA) RA model.

Methods:
Twenty-eight healthy adult male Wistar rats were randomly divided into 3 groups: (I) RA experimental model treated with a PEMF (10 animals), (II) positive control (10 animals), and (III) negative control (8 animals). Group I was exposed to a PEMF (0.3 mT 1 h/day for 2 weeks), while Groups II and III were placed in the same setup, except that the PEMF was turned off. The proprioceptive function [as tactile response (TR) / hopping response (HR) / forelimb placing test (FPT)], paw volume (PF), and mechanoreceptor numbers were then tested.

Results:
There was a significant preservation of mechanoreceptor numbers and proprioception in group I compared to group II, as follows: the number of Ruffini corpuscles mechanoreceptors (p = 0.007) and TR on days 9 and 14 (p = 0.002, 0.012, respectively) with no significant difference compared to group III. Also, PV decreased significantly in group I relative to group II (p = 0.01) with no significant difference for group III.

Conclusions:
PEMF significantly preserved proprioception receptors and function and decreased inflammation severity in the AIA-RA model.

REFERENCES (40)
1.
Wiegmann S, Armbrecht G, Borucki D, Buehring B, Buttgereit F, Detzer C et al. Association between sarcopenia, physical performance and falls in patients with rheumatoid arthritis: a 1-year prospective study. BMC Musculoskelet Disord. 2021;22:885; doi: 10.1186/s12891-021-04605-x.
 
2.
Jin S, Hsieh E, Peng L, Yu C, Wang Y, Wu C et al. Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int. 2018;29(6):1263–1275; doi: 10.1007/s00198-018-4473-1.
 
3.
Armstrong C, Swarbrick CM, Pye SR, O’Neill TW. Occurrence and risk factors for falls in rheumatoid arthritis. Ann Rheum Dis. 2005;64:1602–1604; doi: 10.1136/ard.2004.031195.
 
4.
Aydog E, Bal A, Aydog ST, Çakci A. Evaluation of dynamic postural balance using the Biodex Stability System in rheumatoid arthritis patients. Clin Rheumatol. 2006;25:462–467; doi: 10.1007/s10067-005-0074-4.
 
5.
Agarwal V, Singh R, Wiclaf, Chauhan S, Tahlan A, Ahuja CK et al. A clinical, electrophysiological, and pathological study of neuropathy in rheumatoid arthritis. Clin Rheumatol. 2008;27:841–844; doi: 10.1007/s10067-007-0804-x.
 
6.
Böhler C, Radner H, Ernst M, Binder A, Stamm T, Aletaha D et al. Rheumatoid arthritis and falls: the influence of disease activity. Rheumatol. 2012;51(11):2051–2057; doi: 10.1093/rheumatology/kes198.
 
7.
Williams SB, Brand CA, Hill KD, Hunt SB, Moran H. Feasibility and outcomes of a home-based exercise program on improving balance and gait stability in women with lower-limb osteoarthritis or rheumatoid arthritis: a pilot study. Arch Phys Med Rehabil. 2010;91(1):106–114; doi: 10.1016/j.apmr.2009.08.150.
 
8.
Neuberger GB, Aaronson LS, Gajewski B, Embretson SE, Cagle PE, Loudon JK et al. Predictors of exercise and effects of exercise on symptoms, function, aerobic fitness, and disease outcomes of rheumatoid arthritis. Arthritis Care Res. 2007;57:943–952; doi: 10.1002/art.22903.
 
9.
Gibson W, Arendt-Nielsen L, Taguchi T, Mizumura K, Gra­ven-Nielsen T. Increased pain from muscle fascia following eccentric exercise: animal and human findings. Exp Brain Res. 2009;194:299–308; doi: 10.1007/s00221-008-1699-8.
 
10.
Efthimiou P, Kukar M. Complementary and alternative medicine use in rheumatoid arthritis: Proposed mechanism of action and efficacy of commonly used modalities. Rheumatol Int. 2010;30:571–586; doi: 10.1007/s00296-009-1206-y.
 
11.
Kumar VS, Kumar DA, Kalaivani K, Gangadharan AC, Raju KVSN, Thejomoorthy P et al. Optimization of pulsed electromagnetic field therapy for management of arthritis in rats. Bioelectromagnetics. 2005;26(6):431–439; doi: 10.1002/bem.20100.
 
12.
Bendele A. Animal models of rheumatoid arthritis. J Musculoskelet Neuronal Interact. 2001;1(4):377–85.
 
13.
Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med. 1977;146(3):857–868; doi: 10.1084/jem.146.3.857.
 
14.
Tominaga K, Alstergren P, Kurita H, Kopp S. Clinical course of an antigen-induced arthritis model in the rabbit temporomandibular joint. Oral Pathol Med. 1999;28(6):268–273; doi: 10.1111/j.1600-0714.1999.tb02037.x.
 
15.
Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–8; doi: 10.1016/j.neuroscience.2011.07.066.
 
16.
Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012;221(6):507–536; doi: 10.1111/j.1469-7580.2012.01511.x.
 
17.
Chaudhry H, Max R, Antonio S, Findley T. Mathematical model of fiber orientation in anisotropic fascia layers at large displacements. J Bodyw Mov Ther. 2012;16(2):158–164; doi: 10.1016/j.jbmt.2011.04.006.
 
18.
An YH, Freidman RJ (eds). Animal models in orthopaedic research. Boca Raton: CRC Press; 2020; doi: 10.1201/9780429173479.
 
19.
Hukkanen M, Gronblad M, Rees R, Konttinen YT, Gibson SJ, Hietanen J et al. Regional distribution of mast cells and peptide containing nerves in normal and adjuvant arthritic rat synovium. Rheumatol. 1991;18(2):177–183.
 
20.
Bendele A, McComb J, Gould T, McAbee T, Sennello G, Chlipala E et al. Animal models of arthritis: relevance to human disease. Toxicol Pathol. 1999;27(1):134–142; doi: 10.1177/019262339902700125.
 
21.
Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology. 1995;82(4):1013–1025; doi: 10.1097/00000542-199504000-00026.
 
22.
Krafft PR, McBride DW, Lekic T, Rolland WB, Mansell CE, Ma Q et al. Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behav Brain Res. 2015;264:151–160; doi: 10.1016/j.bbr.2014.01.052.
 
23.
Koch B, Kurriger G, Brand RA. Characterisation of the neurosensory elements of the feline cranial cruciate ligament. J Anat. 1995;187(Pt 2):353–359.
 
24.
Wageh H, Mohammad T, Elias MM, Elwafa NA, Nabhan M, Hassan NS et al. Standardizing sciatic function index rating protocol improves inter-rater reliability and precision of novice assessors. 20th International Scientific Conference Faculty of Physical Therapy Cairo. 2019.
 
25.
Parkkinen S, Ortega FJ, Kuptsova K, Huttunen J, Tarkka I, Jolkkonen J. Gait impairment in a rat model of focal cerebral ischemia. Stroke Res Treat. 2013;410972; doi: 10.1155/2013/410972.
 
26.
Fereidoni M, Ahmadiani A, Semnanian S, Javan M. An accurate and simple method for measurement of paw edema. J Pharmacol Toxicol Methods. 2000;43(1):11–14; doi: 10.1016/s1056-8719(00)00089-7.
 
27.
Miller LE, Jüsten HP, Schölmerich J, Straub RH. The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J. 2000;14(13):2097–2107; doi: 10.1096/fj.99-1082com.
 
28.
Metlı NB, Kurtaran A, Akyüz M. Impaired balance and fall risk in rheumatoid arthritis patients. Turk J Phys Med Rehab. 2015;61:344–351; doi: 10.5152/tftrd.2015.69379.
 
29.
Dekkers JS, Schoones JW, Huizinga TW, Toes RE, van der Helm-van Mil AH. Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: a systematic literature review and meta-analysis. Ann Rheum Dis. 2017;76:458–467; doi: 10.1136/annrheumdis-2016-209830.
 
30.
Fan W, Ding J, Duan W, Zhu YM. The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells. J Magn Magn Mater. 2004;282:325–328; doi: 10.1016/j.jmmm.2004.04.076.
 
31.
Zhang Y, Ding J, Duan W, Fan W. Influence of pulsed electromagnetic field with different pulse duty cycles on neurite outgrowth in PC12 rat pheochromocytoma cells. Bioelectromagnetics. 2005;26(5):406–411; doi: 10.1002/bem.20116.
 
32.
Tasset I, Medina FJ, Jimena I, Agüera E, Gascón F, Feijóo M et al. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience. 2012;209:54–63; doi: 10.1016/j.neuroscience.2012.02.034.
 
33.
Nabhan MMM, Mohammed HSE-D, Balbaa AEAE. Effect of electromagnetic therapy on mechanoreceptor number as a risk factor of low back pain. 17th International Scientific Conference Faculty of Physical Therapy Cairo. 2016.
 
34.
Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippo­campal neurogenesis in C57BL/6 mice. Exp Neurol. 2010;226(1):173–182; doi: 10.1016/j.expneurol.2010.08.022.
 
35.
Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A et al. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium. 2004;35(4):307–315; doi: 10.1016/j.ceca.2003.09.001.
 
36.
Gajewski M, Rzodkiewicz P, Maśliński S, Wojtecka-Łu­kasik E. The role of physiological elements in future therapies of rheumatoid arthritis. III. The role of the electromagnetic field in regulation of redox potential and life cycle of inflammatory cells. Reumatologia. 2015;53(4):219–224; doi: 10.5114/reum.2015.54000.
 
37.
Selvam R, Ganesan K, Narayana Raju KVS, Gangadharan AC, Manohar BM, Puvanakrishnan R. Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sci. 2007;80(26):2403–2410; doi: 10.1016/j.lfs.2007.03.019.
 
38.
Ross CL, Ang DC, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front Immunol. 2019;10:266; doi: 10.3389/fimmu.2019.00266.
 
39.
Thomas AW, White KP, Drost DJ, Cook CM, Prato FS. A comparison of rheumatoid arthritis and fibromyalgia patients and healthy controls exposed to a pulsed (200 microT) magnetic field: effects on normal standing balance. Neurosci Lett. 2001;309(1):17–20; doi: 10.1016/s0304-3940(01)02009-2.
 
40.
Battecha KH, Kamel DM, Tantawy SA. Investigating the effectiveness of adding microcurrent therapy to a traditional treatment program in myofascial pain syndrome in terms of neck pain and function. Physiother Quart. 2021;29(1):17–23; doi: 10.5114/pq.2020.96421.
 
eISSN:2544-4395
Journals System - logo
Scroll to top