ORIGINAL PAPER
Evertor muscle fatigue decreases the passive inversion joint position sense in female volleyball players
 
More details
Hide details
1
Physical Therapy Department, College of Applied Medical Sciences, University of Hail, Ha’il, Saudi Arabia
 
2
Basic Science Department, Faculty of Physical Therapy, Cairo University, Giza, Egypt
 
 
Submission date: 2020-04-22
 
 
Acceptance date: 2020-06-19
 
 
Publication date: 2021-11-30
 
 
Physiother Quart. 2021;29(4):28-32
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The study aimed to investigate the effect of evertor muscle fatigue on passive inversion joint position sense in female volleyball players.

Methods:
A cross-sectional design was implemented in this study. The passive inversion joint position sense of 25 college-age female volleyball players was assessed in fatigue and non-fatigue conditions. A 10° subtalar inversion was used as a target angle for position sense evaluation. The assessment of position sense and the induction of fatigue were performed with a Biodex System isokinetic device. The average error of joint position sense was measured in both fatigue and non-fatigue conditions.

Results:
There was a significant reduction in passive inversion joint position sense when the evertor muscles were fatigued (p < 0.001).

Conclusions:
Peroneal muscle fatigue declines the subtalar joint inversion position sense in female volleyball players.

 
REFERENCES (34)
1.
Wan J-J, Qin Z, Wang P-Y, Sun Y, Liu X. Muscle fatigue: general understanding and treatment. Exp Mol Med. 2017;49(10):e384; doi: 10.1038/emm.2017.194.
 
2.
García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci. 2011;29(6):619–625; doi: 10.1080/02640414.2010.548822.
 
3.
El Gohary TM, Ibrahim SR, El-din Mahmoud WS. Effect of muscle length on fatigue induced by low frequency current stimulation in human medial gastrocnemius muscle. Int J Ther Rehabil Res. 2016;5(4):158–165; doi: 10.5455/ijtrr.000000158.
 
4.
Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med. 2014;44(1):123–140; doi: 10.1007/s40279-013-0102-5.
 
5.
Roos KG, Kerr ZY, Mauntel TC, Djoko A, Dompier TP, Wikstrom EA. The epidemiology of lateral ligament complex ankle sprains in National Collegiate Athletic Association sports. Am J Sports Med. 2017;45(1):201–209; doi: 10.1177/0363546516660980.
 
6.
Feger MA, Glaviano NR, Donovan L, Hart JM, Saliba SA, Park JS, et al. Current trends in the management of lateral ankle sprain in the United States. Clin J Sport Med. 2017;27(2):145–152; doi: 10.1097/JSM.0000000000000321.
 
7.
Kilic O, Maas M, Verhagen E, Zwerver J, Gouttebarge V. Incidence, aetiology and prevention of musculoskeletal injuries in volleyball: a systematic review of the literature. Eur J Sport Sci. 2017;17(6):765–793; doi: 10.1080/17461391.2017.1306114.
 
8.
Márquez G, Alegre LM, Jaén D, Martin-Casado L, Aguado X. Sex differences in kinetic and neuromuscular control during jumping and landing. J Musculoskelet Neuronal Interact. 2017;17(1):409–416.
 
9.
Hadzic V, Sattler T, Topole E, Jarnovic Z, Burger H, Dervisevic E. Risk factors for ankle sprain in volleyball players: a preliminary analysis. Isokinet Exerc Sci. 2009;17(3):155–160; doi: 10.3233/IES-2009-0347.
 
10.
Rey E, Corredoira FJ, Costa PB, Pérez-Ferreirós A, Fernández-Villarino MA. Acute effects of training load on contractile properties during a competitive microcycle in elite soccer players. Biol Sport. 2020;37(2):157–163; doi: 10.5114/biolsport.2020.93041.
 
11.
Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL. Effect of aging on fatigue characteristics of elbow flexor muscles during sustained submaximal contraction. J Appl Physiol. 2001;91(6):2654–2664; doi: 10.1152/jappl.2001.91.6.2654.
 
12.
Bisson EJ, McEwen D, Lajoie Y, Bilodeau M. Effects of ankle and hip muscle fatigue on postural sway and attentional demands during unipedal stance. Gait Posture. 2011;33(1):83–87; doi: 10.1016/j.gaitpost.2010.10.001.
 
13.
Hussien HM, Abdel-Raoof NA, Kattabei OM, Ahmed HH. Effect of Mulligan concept lumbar SNAG on chronic nonspecific low back pain. J Chiropr Med. 2017;16(2):94–102; doi: 10.1016/j.jcm.2017.01.003.
 
14.
Aman JE, Elangovan N, Yeh I-L, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci. 2015;8:1075; doi: 10.3389/fnhum.2014.01075.
 
15.
Wilson EL, Madigan ML. Effects of fatigue and gender on peroneal reflexes elicited by sudden ankle inversion. J Electromyogr Kinesiol. 2007;17(2):160–166; doi: 10.1016/j.jelekin.2006.01.009.
 
16.
Lin YH, Li CW, Tsai LY, Liing R-J. The effects of muscle fatigue and proprioceptive deficits on the passive joint senses of ankle inversion and eversion. Isokinet Exerc Sci. 2008;16(2):101–105; doi: 10.3233/IES-2008-0303.
 
17.
Mohammadi F, Roozdar A. Effects of fatigue due to contraction of evertor muscles on the ankle joint position sense in male soccer players. Am J Sports Med. 2010;38(4):824–828; doi: 10.1177/0363546509354056.
 
18.
Sandrey MA, Kent TE. The effects of eversion fatigue on frontal plane joint position sense in the ankle. J Sport Rehabil. 2008;17(3):257–268; doi: 10.1123/jsr.17.3.257.
 
19.
South M, George KP. The effect of peroneal muscle fatigue on ankle joint position sense. Phys Ther Sport. 2007;8(2):82–87; doi: 10.1016/j.ptsp.2006.12.001.
 
20.
Caron O. Effects of local fatigue of the lower limbs on postural control and postural stability in standing posture. Neurosci Lett. 2003;340(2):83–86; doi: 10.1016/s0304-3940(02)01455-6.
 
21.
Yaggie JA, McGregor SJ. Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Arch Phys Med Rehabil. 2002;83(2):224–228; doi: 10.1053/apmr.2002.28032.
 
22.
Farrag A, Elsayed W. Habitual use of high-heeled shoes affects isokinetic soleus strength more than gastrocnemius in healthy young females. Foot Ankle Int. 2016;37(9):1008–1016; doi: 10.1177/1071100716649172.
 
23.
Coratella G, Beato M, Cè E, Scurati R, Milanese C, Schena F, et al. Effects of in-season enhanced negative work-based vs traditional weight training on change of direction and hamstrings-to-quadriceps ratio in soccer players. Biol Sport. 2019;36(3):241–248; doi: 10.5114/biolsport.2019.87045.
 
24.
Staniszewski M, Mastalerz A, Urbanik C. Effect of a strength or hypertrophy training protocol, each performed using two different modes of resistance, on biomechanical, biochemical and anthropometric parameters. Biol Sport. 2020;37(1):85–91; doi: 10.5114/biolsport.2020.92517.
 
25.
Drouin JM, Valovich-McLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex System 3 Pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22–29; doi: 10.1007/s00421-003-0933-0.
 
26.
Van Melick N, Meddeler BM, Hoogeboom TJ, Nijhuis-van der Sanden MWG, van Cingel REH. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PLoS One. 2017;12(12):e0189876; doi: 10.1371/journal.pone.0189876.
 
27.
Forestier N, Teasdale N, Nougier V. Alteration of the position sense at the ankle induced by muscular fatigue in humans. Med Sci Sports Exerc. 2002;34(1):117–122; doi: 10.1097/00005768-200201000-00018.
 
28.
Boyle J, Negus V. Joint position sense in the recurrently sprained ankle. Aust J Physiother. 1998;44(3):159–163; doi: 10.1016/s0004-9514(14)60375-5.
 
29.
Decourcy Hallinan JTP, Wang W, Pathria MN, Smitaman E, Huang BK. The peroneus longus muscle and tendon: a review of its anatomy and pathology. Skeletal Radiol. 2019;48(9):1329–1344; doi: 10.1007/s00256-019-3168-9.
 
30.
Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364–375.
 
31.
Kobayashi T, Tanaka M, Shida M. Intrinsic risk factors of lateral ankle sprain: a systematic review and meta-analysis. Sports Health. 2016;8(2):190–193; doi: 10.1177/1941738115623775.
 
32.
Hiemstra LA, Lo IK, Fowler PJ. Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther. 2001;31(10):598–605; doi: 10.2519/jospt.2001.31.10.598.
 
33.
Proske U. Exercise, fatigue and proprioception: a retrospective. Exp Brain Res. 2019;237(10):2447–2459; doi: 10.1007/s00221-019-05634-8.
 
34.
Changela PK, Selvamani K, Ramaprabhu. A study to evaluate the effect of fatigue on knee joint proprioception and balance in healthy individuals. Med Sport. 2012;8(2):1851–1857.
 
eISSN:2544-4395
Journals System - logo
Scroll to top