Force-velocity characteristics of lower extremity muscles in male high-altitude climbers
More details
Hide details
Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
Vratislavia Medica St. John Paul II Hospital, Wroclaw, Poland
Faculty of Motor Rehabilitation, University of Physical Education in Krakow, Krakow, Poland
Submission date: 2021-05-25
Acceptance date: 2021-08-17
Publication date: 2021-09-28
Physiother Quart. 2021;29(3):92-97
The study aimed to assess the force-velocity parameters of knee muscles in male high-altitude climbers and to compare the obtained results with the control group.

Overall, 31 male subjects participated in the tests. The study group comprised 12 world-renowned Polish high-altitude climbers. The control group consisted of 19 professional soldiers on active duty. The groups did not differ significantly in the average age, body weight, or height. The force-velocity parameters of knee muscles were assessed under isokinetic conditions. The velocities of 60°/s and 180°/s were used.

The values of peak torque, total work, average power, and the agonist/antagonist ratio were higher and the acceleration and deceleration times were shorter in the study group in comparison with the control group. In particular, the differences in the parameters describing the knee flexors of both limbs proved to be statistically significant. The p-value of the t-test for the dominant limb knee flexors at the velocity of 60°/s was 0.0134 for peak torque, 0.0198 for total work, and 0.0019 for mean power. At the velocity of 180°/s, the p values equalled 0.0001, < 0.0001, and 0.0002, respectively. The effect size of each test was greater than 0.92.

Significant differences in force-velocity parameters of knee muscles were observed between the group of high-mountain climbers and the control group. The increase in the agonist/antagonist ratio and the decrease in the acceleration and deceleration times recorded in the group of high-altitude climbers are indicative of a change in the postural and dynamic mechanisms.

Schneider M. Time at high altitude: experiencing time on the roof of the world. Time Soc. 2002;11(1):141–146; doi: 10.1177/0961463X02011001009.
Peacock AJ. ABC of oxygen: oxygen at high altitude. BMJ. 1998;317(7165):1063–1066; doi: 10.1136/bmj.317.7165.1063.
Kayser B. Why is endurance performance decreased at high altitude? Schweiz Z Sportmed Sporttraumatol. 2005;53(2):54–60.
Brown M, Sinacore DR, Host HH. The relationship of strength to function in the older adult. J Gerontol A Biol Sci Med Sci. 1995;50(Spec Issue):55–59; doi: 10.1093/gerona/50a.special_issue.55.
Brill PA, Macera CA, Davis DR, Blair SN, Gordon N. Muscular strength and physical function. Med Sci Sports Exerc. 2000;32(2):412–416; doi: 10.1097/00005768-200002000-00023.
Basnyat B, Murdoch DR. High-altitude illness. Lancet. 2003;361(9373):1967–1974; doi: 10.1016/S0140-6736(03)13591-X.
Doria C, Verratti V, Pietrangelo T, Fanò-Illic G, Bisconti AV, Shokohyar S, et al. Changes in energy system contributions to the Wingate anaerobic test in climbers after a high altitude expedition. Eur J Appl Physiol. 2020;120(7):1629–1636; doi: 10.1007/s00421-020-04392-8.
Puthon L, Bouzat P, Rupp T, Robach P, Favre-Juvin A, Verges S. Physiological characteristics of elite high-altitude climbers. Scand J Med Sci Sports. 2016;26(9):1052–1059; doi: 10.1111/sms.12547.
West JB. Human responses to extreme altitudes. Integr Comp Biol. 2006;46(1):25–34; doi: 10.1093/icb/icj005.
Alhammoud M, Morel B, Girard O, Racinais S, Sevrez V, Germain A, et al. Hypoxia and fatigue impair rapid torque development of knee extensors in elite alpine skiers. Front Physiol. 2018;9:962; doi: 10.3389/fphys.2018.00962.
Dünnwald T, Gatterer H, Faulhaber M, Arvandi M, Scho­bersberger W. Body composition and body weight changes at different altitude levels: a systematic review and meta-analysis. Front Physiol. 2019;10:430; doi: 10.3389/fphys.2019.00430.
Perrey S, Rupp T. Altitude-induced changes in muscle contractile properties. High Alt Med Biol. 2009;10(2):175–182; doi: 10.1089/ham.2008.1093.
Ruggiero L, Hoiland RL, Hansen AB, Ainslie PN, McNeil CJ. High-altitude acclimatization improves recovery from muscle fatigue. Med Sci Sports Exerc. 2020;52(1):161–169; doi: 10.1249/MSS.0000000000002100.
Ruggiero L, Yacyshyn AF, Nettleton J, McNeil CJ. UBC-Nepal expedition: acclimatization to high-altitude increases spinal motoneurone excitability during fatigue in humans. J Physiol. 2018;596(15):3327–3339; doi: 10.1113/JP274872.
D’Hulst G, Deldicque L. Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol. 2017;122(2):406–408; doi: 10.1152/japplphysiol.00264.2016.
Favier FB, Britto FA, Freyssenet DG, Bigard XA, Benoit H. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology. Cell Mol Life Sci. 2015;72(24):4681–4696; doi: 10.1007/s00018-015-2025-9.
Ocobock CJ. Body fat attenuates muscle mass catabolism among physically active humans in temperate and cold high altitude environments. Am J Hum Biol. 2017;29(5):e23013; doi: 10.1002/ajhb.23013.
Murray AJ. Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med. 2009;1:117; doi: 10.1186/gm117.
Saul D, Steinmetz G, Lehmann W, Schilling AF. Determinants for success in climbing: a systematic review. J Exerc Sci Fit. 2019;17(3):91–100; doi: 10.1016/j.jesf.2019.04.002.
Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42(9):751–767; doi: 10.1007/BF03262293.
Smith KJ, Billaut F. Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol. 2010;109(5):989–999; doi: 10.1007/s00421-010-1444-4.
Davies GJ. A compendium of isokinetics in clinical usage and rehabilitation techniques. Onalaska: S & S Publishers; 1992.
Drouin JM, Valovich-McLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex System 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22–29; doi: 10.1007/s00421-003-0933-0.
Dvir Z. Isokinetics: muscle testing, interpretation and clinical applications. Edinburgh–New York: Churchill Livingstone; 2004.
Chen WL, Su FC, Chou YL. Significance of acceleration period in a dynamic strength testing study. J Orthop Sports Phys Ther. 1994;19(6):324–330; doi: 10.2519/jospt.1994.19.6.324.
Hewett TE, Paterno MV, Myer GD. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res. 2002;402:76–94; doi: 10.1097/00003086-200209000-00008.
Aman JE, Elangovan N, Yeh I-L, Konczak J. The effectiveness of proprioceptive training for improving motor function: a systematic review. Front Hum Neurosci. 2015;8:1075; doi: 10.3389/fnhum.2014.01075.
Backe S, Ericson L, Janson S, Timpka T. Rock climbing injury rates and associated risk factors in a general climbing population. Scand J Med Sci Sports. 2009;19(6):850–856; doi: 10.1111/j.1600-0838.2008.00851.x.
Hoshikawa M, Hashimoto S, Kawahara T, Ide R. Postural instability at a simulated altitude of 5,000 m before and after an expedition to Mt. Cho-Oyu (8,201 m). Eur J Appl Physiol. 2010;110(3):539–547; doi: 10.1007/s00421-010-1530-7.
Stadelmann K, Latshang TD, Lo Cascio CM, Clark RA, Huber R, Kohler M, et al. Impaired postural control in healthy men at moderate altitude (1630 m and 2590 m): data from a randomized trial. PLoS One. 2015;10(2):e0116695; doi: 10.1371/journal.pone.0116695.
Mizuno M, Savard GK, Areskog N-H, Lundby C, Saltin B. Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol. 2008;9(4):311–317; doi: 10.1089/ham.2008.1009.
Edwards LM, Murray AJ, Tyler DJ, Kemp GJ, Holloway CJ, Robbins PA, et al. The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition. PLoS One. 2010;5(5):e10681; doi: 10.1371/journal.pone.0010681.
Journals System - logo
Scroll to top